94 research outputs found

    Effect of pre-germinated brown rice intake on diabetic neuropathy in streptozotocin-induced diabetic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study the effects of a pre-germinated brown rice diet (PR) on diabetic neuropathy in streptozotocin (STZ)-induced diabetic rats.</p> <p>Methods</p> <p>The effects of a PR diet on diabetic neuropathy in STZ-induced diabetic rats were evaluated and compared with those fed brown rice (BR) or white rice (WR) diets with respect to the following parameters: blood-glucose level, motor-nerve conduction velocity (NCV), sciatic-nerve Na<sup>+</sup>/K<sup>+</sup>-ATPase activity, and serum homocysteine-thiolactonase (HTase) activity.</p> <p>Results</p> <p>Compared with diabetic rats fed BR or WR diets, those fed a PR diet demonstrated significantly lower blood-glucose levels (<it>p </it>< 0.001), improved NCV (1.2- and 1.3-fold higher, respectively), and increased Na<sup>+</sup>/K<sup>+</sup>-ATPase activity (1.6- and 1.7-fold higher, respectively). The PR diet was also able to normalize decreased serum homocysteine levels normally seen in diabetic rats. The increased Na<sup>+</sup>/K<sup>+</sup>-ATPase activity observed in rats fed PR diets was associated with elevations in HTase activity (r = 0.913, <it>p </it>< 0.001). The <it>in vitro </it>effect of the total lipid extract from PR bran (TLp) on the Na<sup>+</sup>/K<sup>+</sup>-ATPase and HTase activity was also examined. Incubation of homocysteine thiolactone (HT) with low-density lipoprotein (LDL) <it>in vitro </it>resulted in generation of HT-modified LDL, which possessed high potency to inhibit Na<sup>+</sup>/K<sup>+</sup>-ATPase activity in the sciatic nerve membrane. The inhibitory effect of HT-modified LDL on Na<sup>+</sup>/K<sup>+</sup>-ATPase activity disappeared when TLp was added to the incubation mixture. Furthermore, TLp directly activated the HTase associated with high-density lipoprotein (HDL).</p> <p>Conclusion</p> <p>PR treatment shows efficacy for protecting diabetic deterioration and for improving physiological parameters of diabetic neuropathy in rats, as compared with a BR or WR diet. This effect may be induced by a mechanism whereby PR intake mitigates diabetic neuropathy by one or more factors in the total lipid fraction. The active lipid fraction is able to protect the Na<sup>+</sup>/K<sup>+</sup>-ATPase of the sciatic-nerve membrane from the toxicity of HT-modified LDL and to directly activate the HTase of HDL.</p

    The HPB-AML-I cell line possesses the properties of mesenchymal stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In spite of its establishment from the peripheral blood of a case with acute myeloid leukemia (AML)-M1, HPB-AML-I shows plastic adherence with spindle-like morphology. In addition, lipid droplets can be induced in HPB-AML-I cells by methylisobutylxanthine, hydrocortisone, and indomethacin. These findings suggest that HPB-AML-I is similar to mesenchymal stem cells (MSCs) or mesenchymal stromal cells rather than to hematopoietic cells.</p> <p>Methods</p> <p>To examine this possibility, we characterized HPB-AML-I by performing cytochemical, cytogenetic, and phenotypic analyses, induction of differentiation toward mesenchymal lineage cells, and mixed lymphocyte culture analysis.</p> <p>Results</p> <p>HPB-AML-I proved to be negative for myeloperoxidase, while surface antigen analysis disclosed that it was positive for MSC-related antigens, such as CD29, CD44, CD55, CD59, and CD73, but not for CD14, CD19, CD34, CD45, CD90, CD105, CD117, and HLA-DR. Karyotypic analysis showed the presence of complicated abnormalities, but no reciprocal translocations typically detected in AML cases. Following the induction of differentiation toward adipocytes, chondrocytes, and osteocytes, HPB-AML-I cells showed, in conjunction with extracellular matrix formation, lipid accumulation, proteoglycan synthesis, and alkaline phosphatase expression. Mixed lymphocyte culture demonstrated that CD3<sup>+ </sup>T-cell proliferation was suppressed in the presence of HPB-AML-I cells.</p> <p>Conclusions</p> <p>We conclude that HPB-AML-I cells appear to be unique neoplastic cells, which may be derived from MSCs, but are not hematopoietic progenitor cells.</p

    Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice

    Get PDF
    The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several relaxing factors, such as prostacyclin, nitric oxide (NO), and endothelium-derived hyperpolarizing factor (EDHF). We have previously demonstrated in animals and humans that endothelium-derived hydrogen peroxide (H2O2) is an EDHF that is produced in part by endothelial NO synthase (eNOS). In this study, we show that genetic disruption of all three NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]) abolishes EDHF responses in mice. The contribution of the NOS system to EDHF-mediated responses was examined in eNOS−/−, n/eNOS−/−, and n/i/eNOS−/− mice. EDHF-mediated relaxation and hyperpolarization in response to acetylcholine of mesenteric arteries were progressively reduced as the number of disrupted NOS genes increased, whereas vascular smooth muscle function was preserved. Loss of eNOS expression alone was compensated for by other NOS genes, and endothelial cell production of H2O2 and EDHF-mediated responses were completely absent in n/i/eNOS−/− mice, even after antihypertensive treatment with hydralazine. NOS uncoupling was not involved, as modulation of tetrahydrobiopterin (BH4) synthesis had no effect on EDHF-mediated relaxation, and the BH4/dihydrobiopterin (BH2) ratio was comparable in mesenteric arteries and the aorta. These results provide the first evidence that EDHF-mediated responses are dependent on the NOSs system in mouse mesenteric arteries

    遠隔授業と対面授業、その課題と可能性 コロナ禍から新しい学びへ

    Get PDF
    The pandemic caused by COVID-19 has compelled educators all over the world to make abrupt and drastic changes in their classes from elementary school through college. Japan has been noexception. Universities and colleges in Japan transformed their courses from traditional face-to-face to online lessons. This study explores how college students recognized such online lessons after experiencing one semester in 2020 and discusses the advantages and drawbacks of online lessons by comparison with face-to-face classes. The participants in this study were 128 college freshmen of English majors. We administered an originally designed questionnaire of 23 items comprised of a six-point Likert scale and open-ended questions. As the results of descriptive statistics and Kendall rank correlations, it was discovered that there was no significant correlation between the commuting hours and the preferences for online lessons. Instead, significant correlations between learner styles for individual/group-based learning and the preferences for online lessons were found. Blending face-to-face and online lessons is suggested as an implication for future college education to promote active learning and to offer more learner-friendly educational settings.論

    Divergent ancestral lineages of newfound hantaviruses harbored by phylogenetically related crocidurine shrew species in Korea

    Get PDF
    AbstractSpurred by the recent isolation of a novel hantavirus, named Imjin virus (MJNV), from the Ussuri white-toothed shrew (Crocidura lasiura), targeted trapping was conducted for the phylogenetically related Asian lesser white-toothed shrew (Crocidura shantungensis). Pair-wise alignment and comparison of the S, M and L segments of a newfound hantavirus, designated Jeju virus (JJUV), indicated remarkably low nucleotide and amino acid sequence similarity with MJNV. Phylogenetic analyses, using maximum likelihood and Bayesian methods, showed divergent ancestral lineages for JJUV and MJNV, despite the close phylogenetic relationship of their reservoir soricid hosts. Also, no evidence of host switching was apparent in tanglegrams, generated by TreeMap 2.0β

    Exposure to PM2.5 and Lung Function Growth in Pre- and Early-Adolescent Schoolchildren: A Longitudinal Study Involving Repeated Lung Function Measurements in Japan.

    Get PDF
    Rationale: Epidemiological evidence indicates that ambient exposure to particulate matter ⩽2.5 μm in aerodynamic diameter (PM2.5) has adverse effects on lung function growth in children, but it is not actually clear whether exposure to low-level PM2.5 results in long-term decrements in lung function growth in pre- to early-adolescent schoolchildren. Objectives: To examine long-term effects of PM2.5 within the 4-year average concentration range of 10-19 μg/m3 on lung function growth with repeated measurements of lung function tests. Methods: Longitudinal analysis of 6,233 lung function measurements in 1,466 participants aged 8-12 years from 16 school communities in 10 cities around Japan, covering a broad area of the country to represent concentration ranges of PM2.5, was done with a multilevel linear regression model. Forced expiratory volume in 1 second, forced vital capacity (FVC), and maximal expiratory flow at 50% of FVC were used as lung function indicators to examine the effects of 10-μg/m3 increases in the PM2.5 concentration on relative growth per each 10-cm increase in height. Results: The overall annual mean PM2.5 level was 13.5 μg/m3 (range, 10.4-19.0 μg/m3). We found no association between any of the lung function growth indicators and increases in PM2.5 levels in children of either sex, even after controlling for potential confounders. Analysis with two-pollutant models with O3 or NO2 did not change the null results. Conclusions: This nationwide longitudinal study suggests that concurrent, long-term exposure to PM2.5 at concentrations ranging from 10.4 to 19.0 μg/m3 has little effect on lung function growth in preadolescent boys or pre- to early-adolescent girls

    IGF-1 Induction by Acylated Steryl β-Glucosides Found in a Pre-Germinated Brown Rice Diet Reduces Oxidative Stress in Streptozotocin-Induced Diabetes

    Get PDF
    BACKGROUND: The pathology of diabetic neuropathy involves oxidative stress on pancreatic β-cells, and is related to decreased levels of Insulin-like growth factor 1 (IGF-1). Acylated steryl β-glucoside (PR-ASG) found in pre-germiated brown rice is a bioactive substance exhibiting properties that enhance activity of homocysteine-thiolactonase (HTase), reducing oxidative stress in diabetic neuropathy. The biological importance of PR-ASG in pancreatic β-cells remains unknown. Here we examined the effects of PR-ASG on IGF-1 and glucose metabolism in β-cells exposed to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, a pre-germinated brown rice (PR)-diet was tested in streptozotocin (STZ)-induced diabetic rats. Compared with diabetic rats fed control diets, the PR-diet fed rats showed an improvement of serum metabolic and neurophysiological parameters. In addition, IGF-1 levels were found to be increased in the serum, liver, and pancreas of diabetic rats fed the PR-diet. The increased IGF-1 level in the pancreas led us to hypothesize that PR-ASG is protective for islet β-cells against the extensive injury of advanced or severe diabetes. Thus we examined PR-ASG to determine whether it showed anti-apoptotic, pro-proliferative effects on the insulin-secreting β-cells line, INS-1; and additionally, whether PR-ASG stimulated IGF-1 autocrine secretion/IGF-1-dependent glucose metabolism. We have demonstrated for the first time that PR-ASG increases IGF-1 production and secretion from pancreatic β-cells. CONCLUSION/SIGNIFICANCE: These findings suggest that PR-ASG may affect pancreatic β-cells through the activation of an IGF-1-dependent mechanism in the diabetic condition. Thus, intake of pre-germinated brown rice may have a beneficial effect in the treatment of diabetes, in particular diabetic neuropathy

    Glycine insertion makes yellow fluorescent protein sensitive to hydrostatic pressure

    Get PDF
    Fluorescent protein-based indicators for intracellular environment conditions such as pH and ion concentrations are commonly used to study the status and dynamics of living cells. Despite being an important factor in many biological processes, the development of an indicator for the physicochemical state of water, such as pressure, viscosity and temperature, however, has been neglected. We here found a novel mutation that dramatically enhances the pressure dependency of the yellow fluorescent protein (YFP) by inserting several glycines into it. The crystal structure of the mutant showed that the tyrosine near the chromophore flipped toward the outside of the β-can structure, resulting in the entry of a few water molecules near the chromophore. In response to changes in hydrostatic pressure, a spectrum shift and an intensity change of the fluorescence were observed. By measuring the fluorescence of the YFP mutant, we succeeded in measuring the intracellular pressure change in living cell. This study shows a new strategy of design to engineer fluorescent protein indicators to sense hydrostatic pressure

    β-Catenin asymmetry is regulated by PLA1 and retrograde traffic in C. elegans stem cell divisions

    Get PDF
    Asymmetric division is an important property of stem cells. In Caenorhabditis elegans, the Wnt/β-catenin asymmetry pathway determines the polarity of most asymmetric divisions. The Wnt signalling components such as β-catenin localize asymmetrically to the cortex of mother cells to produce two distinct daughter cells. However, the molecular mechanism to polarize them remains to be elucidated. Here, we demonstrate that intracellular phospholipase A1 (PLA1), a poorly characterized lipid-metabolizing enzyme, controls the subcellular localizations of β-catenin in the terminal asymmetric divisions of epithelial stem cells (seam cells). In mutants of ipla-1, a single C. elegans PLA1 gene, cortical β-catenin is delocalized and the asymmetry of cell-fate specification is disrupted in the asymmetric divisions. ipla-1 mutant phenotypes are rescued by expression of ipla-1 in seam cells in a catalytic activity-dependent manner. Furthermore, our genetic screen utilizing ipla-1 mutants reveals that reduction of endosome-to-Golgi retrograde transport in seam cells restores normal subcellular localization of β-catenin to ipla-1 mutants. We propose that membrane trafficking regulated by ipla-1 provides a mechanism to control the cortical asymmetry of β-catenin
    corecore