41 research outputs found

    Role of tyramine in calcium dynamics of GABAergic neurons and escape behavior in Caenorhabditis elegans

    No full text
    Abstract Background Tyramine, known as a “trace amine” in mammals, modulates a wide range of behavior in invertebrates; however, the underlying cellular and circuit mechanisms are not well understood. In the nematode Caenorhabditis elegans (C. elegans), tyramine affects key behaviors, including foraging, feeding, and escape responses. The touch-evoked backward escape response is often coupled with a sharp omega turn that allows the animal to navigate away in the opposite direction. Previous studies have showed that a metabotropic tyramine receptor, SER-2, in GABAergic body motor neurons controls deep body bending in omega turns. In this study, we focused on the role of tyramine in GABAergic head motor neurons. Our goal is to understand the mechanism by which tyraminergic signaling alters neural circuit activity to control escape behavior. Results Using calcium imaging in freely moving C. elegans, we found that GABAergic RME motor neurons in the head had high calcium levels during forward locomotion but low calcium levels during spontaneous and evoked backward locomotion. This calcium decrease was also observed during the omega turn. Mutant analyses showed that tbh-1 mutants lacking only octopamine had normal calcium responses, whereas tdc-1 mutants lacking both tyramine and octopamine did not exhibit the calcium decrease in RME. This neuromodulation was mediated by SER-2. Moreover, tyraminergic RIM neuron activity was negatively correlated with RME activity in the directional switch from forward to backward locomotion. These results indicate that tyramine released from RIM inhibits RME via SER-2 signaling. The omega turn is initiated by a sharp head bend when the animal reinitiates forward movement. Interestingly, ser-2 mutants exhibited shallow head bends and often failed to execute deep-angle omega turns. The behavioral defect and the abnormal calcium response in ser-2 mutants could be rescued by SER-2 expression in RME. These results suggest that tyraminergic inhibition of RME is involved in the control of omega turns. Conclusion We demonstrate that endogenous tyramine downregulates calcium levels in GABAergic RME motor neurons in the head via the tyramine receptor SER-2 during backward locomotion and omega turns. Our data suggest that this neuromodulation allows deep head bending during omega turns and plays a role in the escape behavior in C. elegans

    Control of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho

    No full text
    Apoptosis is essential for proper development and tissue homeostasis in metazoans. It plays a critical role in generating sexual dimorphism by eliminating structures that are not needed in a specific sex. The molecular mechanisms that regulate sexually dimorphic apoptosis are poorly understood. Here we report the identification of the ceh-30 gene as a key regulator of sex-specific apoptosis in Caenorhabditis elegans. Loss-of-function mutations in ceh-30 cause the ectopic death of male-specific CEM neurons. ceh-30 encodes a BarH homeodomain protein that acts downstream from the terminal sex determination gene tra-1, but upstream of, or in parallel to, the cell-death-initiating gene egl-1 to protect CEM neurons from undergoing apoptosis in males. The second intron of the ceh-30 gene contains two adjacent cis-elements that are binding sites for TRA-1A and a POU-type homeodomain protein UNC-86 and acts as a sensor to regulate proper specification of the CEM cell fate. Surprisingly, the N terminus of CEH-30 but not its homeodomain is critical for CEH-30’s cell death inhibitory activity in CEMs and contains a conserved eh1/FIL domain that is important for the recruitment of the general transcriptional repressor UNC-37/Groucho. Our study suggests that ceh-30 defines a critical checkpoint that integrates the sex determination signal TRA-1 and the cell fate determination and survival signal UNC-86 to control the sex-specific activation of the cell death program in CEMs through the general transcription repressor UNC-37

    Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans.

    Get PDF
    In multicellular organisms, the surface barrier is essential for maintaining the internal environment. In mammals, the barrier is the stratum corneum. Fatty acid transport protein 4 (FATP4) is a key factor involved in forming the stratum corneum barrier. Mice lacking Fatp4 display early neonatal lethality with features such as tight, thick, and shiny skin, and a defective skin barrier. These symptoms are strikingly similar to those of a human skin disease called restrictive dermopathy. FATP4 is a member of the FATP family that possesses acyl-CoA synthetase activity for very long chain fatty acids. How Fatp4 contributes to skin barrier function, however, remains to be elucidated. In the present study, we characterized two Caenorhabditis elegans genes, acs-20 and acs-22, that are homologous to mammalian FATPs. Animals with mutant acs-20 exhibited defects in the cuticle barrier, which normally prevents the penetration of small molecules. acs-20 mutant animals also exhibited abnormalities in the cuticle structure, but not in epidermal cell fate or cell integrity. The acs-22 mutants rarely showed a barrier defect, whereas acs-20;acs-22 double mutants had severely disrupted barrier function. Moreover, the barrier defects of acs-20 and acs-20;acs-22 mutants were rescued by acs-20, acs-22, or human Fatp4 transgenes. We further demonstrated that the incorporation of exogenous very long chain fatty acids into sphingomyelin was reduced in acs-20 and acs-22 mutants. These findings indicate that C. elegans Fatp4 homologue(s) have a crucial role in the surface barrier function and this model might be useful for studying the fundamental molecular mechanisms underlying human skin barrier and relevant diseases

    Additional file 1: of Role of tyramine in calcium dynamics of GABAergic neurons and escape behavior in Caenorhabditis elegans

    No full text
    Figure S1. ICaST system for optogenetic control and simultaneous calcium imaging in freely moving animals. The light paths are indicated by colored arrows. Details are described in the Materials and Methods and a previous report [27]. Figure S2. R-CaMP2 imaging in RME. (A) Representative images of a transgenic animal expressing both R-CaMP2 and EGFP in RME neurons in forward (top panels) and backward (bottom panels) movements. Transmitted-light images (TD), raw fluorescent images of R-CaMP2 and EGFP, fluorescent merged images, and pseudocolor ratio images (R-CaMP2/EGFP) are shown. (B) Fluorescent intensity ratio values (R=R-CaMP2/EGFP) of RME in a freely moving animal are plotted as a function of time. (C) Quantitative analysis of mean fluorescent ratio changes of RME during forward (gray) and backward (red) locomotion. The mean value of R during forward locomotion was normalized as 100%. Figure S3. tbh-1 mutants exhibit normal calcium responses in RME during backward locomotion. A representative calcium trace of RME in tbh-1(ok1193) mutants. Figure S4. tph-1 and cat-2 mutants exhibit normal calcium responses in RME during backward locomotion. (A) Biosynthetic pathways of serotonin and dopamine. Genes encoding synthetic enzymes are shown under the arrows. (B, C) Calcium dynamics of RME in tph-1 (mg280) (B) and cat-2 (jq6) (C) mutants during spontaneous locomotion. Table S1. C. elegans strains used in this study. Table S2. Transgenic lines generated in this study. Table S3. Mutations and primers for genotyping. Table S4. Primers for molecular biology. (PDF 359 kb

    Single/low-copy integration of transgenes in Caenorhabditis elegans using an ultraviolet trimethylpsoralen method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transgenic strains of <it>Caenorhabditis elegans </it>are typically generated by injecting DNA into the germline to form multi-copy extrachromosomal arrays. These transgenes are semi-stable and their expression is silenced in the germline. Mos1 transposon or microparticle bombardment methods have been developed to create single- or low-copy chromosomal integrated lines. Here we report an alternative method using ultraviolet trimethylpsoralen (UV/TMP) to generate single/low-copy gene integrations.</p> <p>Results</p> <p>We successfully integrated low-copy transgenes from extrachromosomal arrays using positive selection based on temperature sensitivity with a <it>vps-45 </it>rescue fragment and negative selection based on benzimidazole sensitivity with a <it>ben-1 </it>rescue fragment. We confirmed that the integrants express transgenes in the germline. Quantitative PCR revealed that strains generated by this method contain single- or low-copy transgenes. Moreover, positive selection marker genes flanked by LoxP sites were excised by Cre recombinase mRNA microinjection, demonstrating Cre-mediated chromosomal excision for the first time in <it>C. elegans</it>.</p> <p>Conclusion</p> <p>Our UV/TMP integration method, based on familiar extrachromosomal transgenics, provides a useful approach for generating single/low-copy gene integrations.</p

    Generation and Imaging of Transgenic Mice that Express G-CaMP7 under a Tetracycline Response Element

    No full text
    <div><p>The spatiotemporally controlled expression of G-CaMP fluorescent calcium indicator proteins can facilitate reliable imaging of brain circuit activity. Here, we generated a transgenic mouse line that expresses G-CaMP7 under a tetracycline response element. When crossed with a forebrain-specific tetracycline-controlled transactivator driver line, the mice expressed G-CaMP7 in defined cell populations in a tetracycline-controlled manner, notably in pyramidal neurons in layer 2/3 of the cortex and in the CA1 area of the hippocampus; this expression allowed for imaging of the <i>in vivo</i> activity of these circuits. This mouse line thus provides a useful genetic tool for controlled G-CaMP expression <i>in vivo</i>.</p></div

    Visualization 2

    No full text
    Spontaneous activity of hippocampal CA1 circuits imaged using the microendoscope (Fig.5(d)). The images corresponding to the first minute are shown in this movie. The playback speed is 5x faster than the speed of real activity. Time stamps are indicated in the upper left corner of the movie

    Transgene expression in brain areas outside the neocortex and hippocampus.

    No full text
    <p>The expression patterns of G-CaMP7 and DsRed2 in coronal sections of the olfactory bulb, piriform cortex, amygdala and striatum from TRE-G-CaMP7 x CaMKII-tTA mice are shown at lower (left panels for each brain area) and higher (right panels) magnifications. Arrowheads indicate olfactory glomeruli intensely labeled by G-CaMP7. Arrows represent examples of striatal neurons strongly expressing G-CaMP7. Gl, glomerular layer; EP, external plexiform layer; MC, mitral cell layer; IP, internal plexiform layer; Gr, granule cell layer; I, II, and III, layers I, II, and III of the piriform cortex, respectively; LA, lateral amygdala; BLA, basolateral amygdala; St, striatum; EC, external capsule; D, dorsal; L, lateral; M, medial. Scale bar = 100 μm.</p
    corecore