Additional file 1: of Role of tyramine in calcium dynamics of GABAergic neurons and escape behavior in Caenorhabditis elegans

Abstract

Figure S1. ICaST system for optogenetic control and simultaneous calcium imaging in freely moving animals. The light paths are indicated by colored arrows. Details are described in the Materials and Methods and a previous report [27]. Figure S2. R-CaMP2 imaging in RME. (A) Representative images of a transgenic animal expressing both R-CaMP2 and EGFP in RME neurons in forward (top panels) and backward (bottom panels) movements. Transmitted-light images (TD), raw fluorescent images of R-CaMP2 and EGFP, fluorescent merged images, and pseudocolor ratio images (R-CaMP2/EGFP) are shown. (B) Fluorescent intensity ratio values (R=R-CaMP2/EGFP) of RME in a freely moving animal are plotted as a function of time. (C) Quantitative analysis of mean fluorescent ratio changes of RME during forward (gray) and backward (red) locomotion. The mean value of R during forward locomotion was normalized as 100%. Figure S3. tbh-1 mutants exhibit normal calcium responses in RME during backward locomotion. A representative calcium trace of RME in tbh-1(ok1193) mutants. Figure S4. tph-1 and cat-2 mutants exhibit normal calcium responses in RME during backward locomotion. (A) Biosynthetic pathways of serotonin and dopamine. Genes encoding synthetic enzymes are shown under the arrows. (B, C) Calcium dynamics of RME in tph-1 (mg280) (B) and cat-2 (jq6) (C) mutants during spontaneous locomotion. Table S1. C. elegans strains used in this study. Table S2. Transgenic lines generated in this study. Table S3. Mutations and primers for genotyping. Table S4. Primers for molecular biology. (PDF 359 kb

    Similar works

    Full text

    thumbnail-image

    Available Versions