204 research outputs found

    What is the effect of a formalised trauma tertiary survey procedure on missed injury rates in multi-trauma patients? Study protocol for a randomised controlled trial

    Get PDF
    Background: Missed injury is commonly used as a quality indicator in trauma care. The trauma tertiary survey (TTS) has been proposed to reduce missed injuries. However a systematic review assessing the effect of the TTS on missed injury rates in trauma patients found only observational studies, only suggesting a possible increase in early detection and reduction in missed injuries, with significant potential biases. Therefore, more robust methods are necessary to test whether implementation of a formal TTS will increase early in-hospital injury detection, decrease delayed diagnosis and decrease missed injuries after hospital discharge. Methods/Design: We propose a cluster-randomised, controlled trial to evaluate trauma care enhanced with a formalised TTS procedure. Currently, 20 to 25% of trauma patients routinely have a TTS performed. We expect this to increase to at least 75%. The design is for 6,380 multi-trauma patients in approximately 16 hospitals recruited over 24 months. In the first 12 months, patients will be randomised (by hospital) and allocated 1:1 to receive either the intervention (Group 1) or usual care (Group 2). The recruitment for the second 12 months will entail Group 1 hospitals continuing the TTS, and the Group 2 hospitals beginning it to enable estimates of the persistence of the intervention. The intervention is complex: implementation of formal TTS form, small group education, and executive directive to mandate both. Outcome data will be prospectively collected from (electronic) medical records and patient (telephone follow-up) questionnaires. Missed injuries will be adjudicated by a blinded expert panel. The primary outcome is missed injuries after hospital discharge; secondary outcomes are maintenance of the intervention effect, in-hospital missed injuries, tertiary survey performance rate, hospital and ICU bed days, interventions required for missed injuries, advanced diagnostic imaging requirements, readmissions to hospital, days of work and quality of life (EQ-5D-5 L) and mortality. Discussion: The findings of this study may alter the delivery of international trauma care. If formal TTS is (cost-) effective this intervention should be implemented widely. If not, where already partly implemented, it should be abandoned. Study findings will be disseminated widely to relevant clinicians and health funders.Griffith Health, School of MedicineFull Tex

    Deliberate clinical inertia: Using meta-cognition to improve decision-making

    Get PDF
    Deliberate clinical inertia is the art of doing nothing as a positive response. To be able to apply this concept, individual clinicians need to specifically focus on their clinical decision-making. The skill of solving problems and making optimal clinical decisions requires more attention in medical training and should play a more prominent part of the medical curriculum. This paper provides suggestions on how this may be achieved. Strategies to mitigate common biases are outlined, with an emphasis on reversing a 'more is better' culture towards more temperate, critical thinking. To incorporate such an approach in medical curricula and in clinical practice, institutional endorsement and support is required

    The effect of tertiary surveys on missed injuries in trauma:A systematic review

    Get PDF
    BACKGROUND: Trauma tertiary surveys (TTS) are advocated to reduce the rate of missed injuries in hospitalized trauma patients. Moreover, the missed injury rate can be a quality indicator of trauma care performance. Current variation of the definition of missed injury restricts interpretation of the effect of the TTS and limits the use of missed injury for benchmarking. Only a few studies have specifically assessed the effect of the TTS on missed injury. We aimed to systematically appraise these studies using outcomes of two common definitions of missed injury rates and long-term health outcomes. METHODS: A systematic review was performed. An electronic search (without language or publication restrictions) of the Cochrane Library, Medline and Ovid was used to identify studies assessing TTS with short-term measures of missed injuries and long-term health outcomes. ‘Missed injury’ was defined as either: Type I) any injury missed at primary and secondary survey and detected by the TTS; or Type II) any injury missed at primary and secondary survey and missed by the TTS, detected during hospital stay. Two authors independently selected studies. Risk of bias for observational studies was assessed using the Newcastle-Ottawa scale. RESULTS: Ten observational studies met our inclusion criteria. None was randomized and none reported long-term health outcomes. Their risk of bias varied considerably. Nine studies assessed Type I missed injury and found an overall rate of 4.3%. A single study reported Type II missed injury with a rate of 1.5%. Three studies reported outcome data on missed injuries for both control and intervention cohorts, with two reporting an increase in Type I missed injuries (3% vs. 7%, P<0.01), and one a decrease in Type II missed injuries (2.4% vs. 1.5%, P=0.01). CONCLUSIONS: Overall Type I and Type II missed injury rates were 4.3% and 1.5%. Routine TTS performance increased Type I and reduced Type II missed injuries. However, evidence is sub-optimal: few observational studies, non-uniform outcome definitions and moderate risk of bias. Future studies should address these issues to allow for the use of missed injury rate as a quality indicator for trauma care performance and benchmarking

    Derivation of a clinical decision-making aid to improve the insertion of clinically indicated peripheral intravenous catheters and promote vessel health preservation. An observational study

    Get PDF
    Background It is well established that the idle peripheral intravenous catheter (PIVC) provides no therapeutic value and is a clinical, economic and above all, patient concern. This study aimed to develop a decision aid to assist with clinical decision making to promote clinically indicated peripheral intravenous catheter (CIPIVC) insertion in the emergency department (ED) setting. Providing evidence for a uniform process could assist clinicians in a decision-making process for PIVC insertion. This could enable patients receive appropriate vascular access healthcare. Methods We performed a secondary analysis of data from a multicentre cohort of emergency department clinicians who performed PIVC insertion. We defined CIPIVC a priori as one used for a specific clinical treatment and or procedure such as prescribed intravenous (IV) fluids; prescribed IV medication; or IV contrast (for computerized tomography scans). We sought to refute or validate an assumption if the clinician performing or requesting the insertion decided the patient was >80% likely to need a PIVC. Using logistic regression, we derived a decision aid for CIPIVCs. Results In 817 patients undergoing PIVC insertion, we observed 68% of these to be CIPIVCs. Admitted patients were significantly more likely to have a CIPIVC, Odds Ratio (OR) = 3.05, 95% confidence interval (CI) = 2.17–4.30, p = <0.0001. Before insertion, patients who definitely needed IV fluids/medicines OR = 3.30, 95% CI = 2.02–5.39, p = <0.0001 and who definitely needed a contrast scan OR = 3.04, 95% CI = 1.15–8.03, p = 0.0250 were significantly more likely to have a device inserted for a clinical indication. Patients who presented with an existing vascular access device were more likely to have a new CIPIVC inserted for use OR = 4.35, 95% CI = 1.58–11.95, p = 0.0043. The clinician’s pre-procedural judgment of the likelihood of therapeutic use >80% was independently associated with CIPIVC; OR 3.16, 95% CI = 2.06–4.87, p<0.0001. The area under the receiver operating characteristic curve was 0.81, and at the best cut-off, the model had a specificity of 0.81, sensitivity of 0.71, a positive predictive value of 0.89 and negative predictive value of 0.57. Conclusions Using the derived decision aid, clinicians could ask:- “Does this patient need A-PIVC?” Clinicians can decide to insert a CIPIVCs when: (i) Admission to hospital is anticipated and when (ii) a Procedure requires a PIVC, e.g., computerised tomography scans and where an existing suitable vascular access device is not present and or; (iii) there is an indication for IV fluids and or medicines that cannot be tolerated enterally and are suitable for dilution in peripheral veins; and, (iv) the Clinician’s perceived likelihood of use is greater than 80%.Full Tex

    Tight-binding g-Factor Calculations of CdSe Nanostructures

    Full text link
    The Lande g-factors for CdSe quantum dots and rods are investigated within the framework of the semiempirical tight-binding method. We describe methods for treating both the n-doped and neutral nanostructures, and then apply these to a selection of nanocrystals of variable size and shape, focusing on approximately spherical dots and rods of differing aspect ratio. For the negatively charged n-doped systems, we observe that the g-factors for near-spherical CdSe dots are approximately independent of size, but show strong shape dependence as one axis of the quantum dot is extended to form rod-like structures. In particular, there is a discontinuity in the magnitude of g-factor and a transition from anisotropic to isotropic g-factor tensor at aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of both the conduction and valence band electrons. We find that the behavior of the electron g-factor in the neutral nanocrystals is generally similar to that in the n-doped case, showing the same strong shape dependence and discontinuity in magnitude and anisotropy. In smaller systems the g-factor value is dependent on the details of the surface model. Comparison with recent measurements of g-factors for CdSe nanocrystals suggests that the shape dependent transition may be responsible for the observations of anomalous numbers of g-factors at certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio
    corecore