305 research outputs found

    Intermediated Securities Holding Systems Revisited: A View Through the Prism of Transparency

    Get PDF
    This chapter explains several benefits of adopting transparent information technology systems for intermediated securities holding infrastructures. Such transparent systems could ameliorate various prevailing problems that confront existing tiered, intermediated holding systems, including those related to corporate actions (dividends, voting), claims against issuers and upper-tier intermediaries, loss sharing and set-off in insolvency proceedings, money laundering and terrorist financing, and privacy, data protection, and confidentiality. Moreover, transparent systems could improve the functions of intermediated holding systems even without changes in laws or regulations. They also could provide a catalyst for law reform and a roadmap for substantive content of reforms. Among potential areas of law reform that transparent systems might inspire is the prospect for disintermediation of holding systems through new technologies, including digital ledger technology

    Nitrate and the origin of saliva influence composition and short chain fatty acid production of oral microcosms

    Get PDF
    Nitrate is emerging as a possible health benefactor. Especially the microbial conversion of nitrate to nitrite in the oral cavity and the subsequent conversion to nitric oxide in the stomach are of interest in this regard. Yet, how nitrate influences the composition and biochemistry of the oral ecosystem is not fully understood. To investigate the effect of nitrate on oral ecology, we performed a 4-week experiment using the multiplaque artificial mouth (MAM) biofilm model. This model was inoculated with stimulated saliva of two healthy donors. Half of the microcosms (n = 4) received a constant supply of nitrate, while the other half functioned as control (n = 4). Additionally, all microcosms received a nitrate and sucrose pulse, each week, on separate days to measure nitrate reduction and acid formation. The bacterial composition of the microcosms was determined by 16S rDNA sequencing. The origin of the saliva (i.e., donor) showed to be the strongest determinant for the development of the microcosms. The supplementation of nitrate was related to a relatively high abundance of Neisseria in the microcosms of both donors, while Veillonella was highly abundant in the nitrate-supplemented microcosms of only one of the donors. The lactate concentration after sucrose addition was similarly high in all microcosms, irrespective of treatment or donor, while the concentration of butyrate was lower after nitrate addition in the nitrate-receiving microcosms. In conclusion, nitrate influences the composition and biochemistry of oral microcosms, although the result is strongly dependent on the inoculum

    The Relation between Oral Candida Load and Bacterial Microbiome Profiles in Dutch Older Adults.

    Get PDF
    Currently there are no evidence-based ecological measures for prevention of overgrowth and subsequent infection by fungi in the oral cavity. The aim of this study was to increase our knowledge on fungal-bacterial ecological interactions. Salivary Candida abundance of 82 Dutch adults aged 58-80 years was established relative to the bacterial load by quantitative PCR analysis of the Internal Transcribed (ITS) region (Candida) and 16S rDNA gene (bacteria). The salivary microbiome was assessed using barcoded pyrosequencing of the bacterial hypervariable regions V5-V7 of 16S rDNA. Sequencing data was preprocessed by denoising and chimera removal, clustered in Operational Taxonomic Units (OTUs) and assigned to taxonomy. Both OTU-based (PCA, diversity statistics) and phylogeny-based analyses (UniFrac, PCoA) were performed. Saliva of Dutch older adults contained 0-4 × 108 CFU/mL Candida with a median Candida load of 0.06%. With increased Candida load the diversity of the salivary microbiome decreased significantly (p<0.001). Increase in the Candida load correlated positively with class Bacilli, and negatively with class Fusobacteria, Flavobacteria, and Bacteroidia. Microbiomes with high Candida load were less diverse and had a distinct microbial composition towards dominance by saccharolytic and acidogenic bacteria - streptococci. The control of the acidification of the oral environment may be a potential preventive measure for Candida outgrowth that should be evaluated in longitudinal clinical intervention trials. © 2012 Kraneveld et al
    • …
    corecore