9 research outputs found

    A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All previously reported eukaryotic nuclear genome sequences have been incomplete, especially in highly repeated units and chromosomal ends. Because repetitive DNA is important for many aspects of biology, complete chromosomal structures are fundamental for understanding eukaryotic cells. Our earlier, nearly complete genome sequence of the hot-spring red alga <it>Cyanidioschyzon merolae </it>revealed several unique features, including just three ribosomal DNA copies, very few introns, and a small total number of genes. However, because the exact structures of certain functionally important repeated elements remained ambiguous, that sequence was not complete. Obviously, those ambiguities needed to be resolved before the unique features of the <it>C. merolae </it>genome could be summarized, and the ambiguities could only be resolved by completing the sequence. Therefore, we aimed to complete all previous gaps and sequence all remaining chromosomal ends, and now report the first nuclear-genome sequence for any eukaryote that is 100% complete.</p> <p>Results</p> <p>Our present complete sequence consists of 16546747 nucleotides covering 100% of the 20 linear chromosomes from telomere to telomere, representing the simple and unique chromosomal structures of the eukaryotic cell. We have unambiguously established that the <it>C. merolae </it>genome contains the smallest known histone-gene cluster, a unique telomeric repeat for all chromosomal ends, and an extremely low number of transposons.</p> <p>Conclusion</p> <p>By virtue of these attributes and others that we had discovered previously, <it>C. merolae </it>appears to have the simplest nuclear genome of the non-symbiotic eukaryotes. These unusually simple genomic features in the 100% complete genome sequence of <it>C. merolae </it>are extremely useful for further studies of eukaryotic cells.</p

    The role of Purkinje fibers in the emergence of an incessant form of polymorphic ventricular tachycardia or ventricular fibrillation associated with ischemic heart disease

    Get PDF
    Background: The clinical and electrophysiological characteristic of ventricular premature contractions (VPCs) which trigger the incessant form of polymorphic ventricular tachycardia (VT), so-called “electrical storm” associated with ischemic heart disease, remains unclarified. The aim of this study was to evaluate those matters and the possible role of the Purkinje network in the emergence of an electrical storm. Methods and results: We experienced 5 patients (68 ± 5 years, mean LVEF: 29%) with electrical storms which occurred during the acute phase of an infarction in 3 patients and the remote phase in 2. The triggering VPCs were multifocal in 3 patients and monofocal in the remaining 2. Radiofrequency (RF) catheter ablation was performed for a goal of eliminating the triggering VPCs. A total of 9 different kinds of VPCs differentiated by their morphology were successfully eliminated by the RF deliveries targeting the VPCs’ foci. At the successful ablation sites, Purkinje potentials preceded the QRS onset of the VPC by 67 ± 23 ms, suggesting the VPCs originated in the surviving Purkinje fibers. Moreover, the extensive RF deliveries applied at the surviving Purkinje network rendered the polymorphic VT unable to be induced by programmed stimulation which reproducibly induced it before the ablation in 2 patients. Conclusion: A surviving Purkinje network might contribute not only to the initiation of the repetitive form of lethal ventricular arrhythmias, but also to the perpetuation of the arrhythmias in patients with ischemic heart disease

    Empagliflozin in Patients with Chronic Kidney Disease

    No full text
    Background The effects of empagliflozin in patients with chronic kidney disease who are at risk for disease progression are not well understood. The EMPA-KIDNEY trial was designed to assess the effects of treatment with empagliflozin in a broad range of such patients. Methods We enrolled patients with chronic kidney disease who had an estimated glomerular filtration rate (eGFR) of at least 20 but less than 45 ml per minute per 1.73 m(2) of body-surface area, or who had an eGFR of at least 45 but less than 90 ml per minute per 1.73 m(2) with a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of at least 200. Patients were randomly assigned to receive empagliflozin (10 mg once daily) or matching placebo. The primary outcome was a composite of progression of kidney disease (defined as end-stage kidney disease, a sustained decrease in eGFR to &lt; 10 ml per minute per 1.73 m(2), a sustained decrease in eGFR of &amp; GE;40% from baseline, or death from renal causes) or death from cardiovascular causes. Results A total of 6609 patients underwent randomization. During a median of 2.0 years of follow-up, progression of kidney disease or death from cardiovascular causes occurred in 432 of 3304 patients (13.1%) in the empagliflozin group and in 558 of 3305 patients (16.9%) in the placebo group (hazard ratio, 0.72; 95% confidence interval [CI], 0.64 to 0.82; P &lt; 0.001). Results were consistent among patients with or without diabetes and across subgroups defined according to eGFR ranges. The rate of hospitalization from any cause was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.86; 95% CI, 0.78 to 0.95; P=0.003), but there were no significant between-group differences with respect to the composite outcome of hospitalization for heart failure or death from cardiovascular causes (which occurred in 4.0% in the empagliflozin group and 4.6% in the placebo group) or death from any cause (in 4.5% and 5.1%, respectively). The rates of serious adverse events were similar in the two groups. Conclusions Among a wide range of patients with chronic kidney disease who were at risk for disease progression, empagliflozin therapy led to a lower risk of progression of kidney disease or death from cardiovascular causes than placebo

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore