69 research outputs found

    Cryopreservation of Mouse Embryos by Ethylene Glycol-Based Vitrification

    Get PDF
    Cryopreservation of mouse embryos is a technological basis that supports biomedical sciences, because many strains of mice have been produced by genetic modifications and the number is consistently increasing year by year. Its technical development started with slow freezing methods in the 1970s1, then followed by vitrification methods developed in the late 1980s2. Generally, the latter technique is advantageous in its quickness, simplicity, and high survivability of recovered embryos. However, the cryoprotectants contained are highly toxic and may affect subsequent embryo development. Therefore, the technique was not applicable to certain strains of mice, even when the solutions are cooled to 4Β°C to mitigate the toxic effect during embryo handling. At the RIKEN BioResource Center, more than 5000 mouse strains with different genetic backgrounds and phenotypes are maintained3, and therefore we have optimized a vitrification technique with which we can cryopreserve embryos from many different strains of mice, with the benefits of high embryo survival after vitrifying and thawing (or liquefying, more precisely) at the ambient temperature4

    The Effect on Intracytoplasmic Sperm Injection Outcome of Genotype, Male Germ Cell Stage and Freeze-Thawing in Mice

    Get PDF
    BACKGROUND: Intracytoplasmic sperm injection (ICSI) has been widely used to study the mechanisms of mammalian fertilization and to rescue male-factor infertility in humans and animals. However, very few systematic analyses have been conducted to define factors affecting the efficiency of ICSI. In this study, we undertook a large-scale series of ICSI experiments in mice to define the factors that might affect outcomes. METHODOLOGY/PRINCIPAL FINDINGS: We used a 5 x 3 x 2 factorial design with the following factors: mouse genotype (ICR, C57BL/6, DBA/2, C3H/He, and 129/Sv strains), type of male germ cells (epididymal sperm, elongated or round spermatids), and their freeze-thawing treatment. The efficiencies (parameters) of each developmental step were analyzed by three-way ANOVA (significance level P<0.01). The type of male germ cells affected all the four parameters observed: oocyte survival after injection, cleavage of oocytes, implantation, and birth of offspring. Genotype affected the oocyte survival, cleavage and birth rates, whereas freeze-thawing had no effects on any of the parameters. There were significant genotype/cell type interactions for oocyte survival and cleavage, indicating that they were determined by a combination of strain and germ cell maturity. Multiple comparisons revealed that spermatozoa and elongated spermatids gave better implantation and birth rates than did round spermatids, while spermatozoa and elongated spermatozoa were indistinguishable in their ability to support embryonic development. The best overall efficiency (birth rate per oocytes injected) was obtained with frozen-thawed DBA/2 strain elongated spermatids (23.2+/-4.2%). CONCLUSIONS/SIGNIFICANCE: The present study provides the first comprehensive information on ICSI using the mouse as a model and will contribute to the efficient use of materials, time, and efforts in biomedical research and clinics involving ICSI

    Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ

    Get PDF
    Background: Although CRISPR/Cas enables one-step gene cassette knock-in, assembling targeting vectors containing long homology arms is a laborious process for high-throughput knock-in. We recently developed the CRISPR/Cas-based precise integration into the target chromosome (PITCh) system for a gene cassette knock-in without long homology arms mediated by microhomology-mediated end-joining. Results: Here, we identified exonuclease 1 (Exo1) as an enhancer for PITCh in human cells. By combining the Exo1 and PITCh-directed donor vectors, we achieved convenient one-step knock-in of gene cassettes and floxed allele both in human cells and mouse zygotes. Conclusions: Our results provide a technical platform for high-throughput knock-in

    One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT)

    Get PDF
    Ohtsuka, M., Miura, H., Mochida, K. et al. One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT). BMC Genomics 16, 274 (2015). https://doi.org/10.1186/s12864-015-1432-

    MAFB is dispensable for the fetal testis morphogenesis and the maintenance of spermatogenesis in adult mice

    Get PDF
    The transcription factor MAFB is an important regulator of the development and differentiation of various organs and tissues. Previous studies have shown that MAFB is expressed in embryonic and adult mouse testes and is expected to act as the downstream target of retinoic acid (RA) to initiate spermatogenesis. However, its exact localization and function remain unclear. Here, we localized MAFB expression in embryonic and adult testes and analyzed its gene function using Mafb-deficient mice. We found that MAFB and c-MAF are the only large MAF transcription factors expressed in testes, while MAFA and NRL are not. MAFB was localized in Leydig and Sertoli cells at embryonic day (E) 18.5 but in Leydig cells, Sertoli cells, and pachytene spermatocytes in adults. Mafb-deficient testes at E18.5 showed fully formed seminiferous tubules with no abnormal structure or differences in testicular somatic cell numbers compared with those of control wild-type mice. Additionally, the expression levels of genes related to development and function of testicular cells were unchanged between genotypes. In adults, the expression of MAFB in Sertoli cells was shown to be stage specific and induced by RA. By generating Mafbfl/fl CAG-CreERβ„’ (Mafb-cKO) mice, in which Cre recombinase was activated upon tamoxifen treatment, we found that the neonatal cKO mice died shortly upon Mafb deletion, but adult cKO mice were alive upon deletion. Adult cKO mice were fertile, and spermatogenesis maintenance was normal, as indicated by histological analysis, hormone levels, and germ cell stage-specific markers. Moreover, there were no differences in the proportion of seminiferous stages between cKO mice and controls. However, RNA-Seq analysis of cKO Sertoli cells revealed that the down-regulated genes were related to immune function and phagocytosis activity but not spermatogenesis. In conclusion, we found that MAFB is dispensable for fetal testis morphogenesis and spermatogenesis maintenance in adult mice, despite the significant gene expression in different cell types, but MAFB might be critical for phagocytosis activity of Sertoli cells

    A High-Speed Congenic Strategy Using First-Wave Male Germ Cells

    Get PDF
    BACKGROUND: In laboratory mice and rats, congenic breeding is essential for analyzing the genes of interest on specific genetic backgrounds and for analyzing quantitative trait loci. However, in theory it takes about 3-4 years to achieve a strain carrying about 99% of the recipient genome at the tenth backcrossing (N10). Even with marker-assisted selection, the so-called 'speed congenic strategy', it takes more than a year at N4 or N5. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a new high-speed congenic system using round spermatids retrieved from immature males (22-25 days of age). We applied the technique to three genetically modified strains of mice: transgenic (TG), knockin (KI) and N-ethyl-N-nitrosourea (ENU)-induced mutants. The donor mice had mixed genetic backgrounds of C57BL/6 (B6):DBA/2 or B6:129 strains. At each generation, males used for backcrossing were selected based on polymorphic marker analysis and their round spermatids were injected into B6 strain oocytes. Backcrossing was repeated until N4 or N5. For the TG and ENU-mutant strains, the N5 generation was achieved on days 188 and 190 and the proportion of B6-homozygous loci was 100% (74 markers) and 97.7% (172/176 markers), respectively. For the KI strain, N4 was achieved on day 151, all the 86 markers being B6-homozygous as early as on day 106 at N3. The carrier males at the final generation were all fertile and propagated the modified genes. Thus, three congenic strains were established through rapid generation turnover between 41 and 44 days. CONCLUSIONS/SIGNIFICANCE: This new high-speed breeding strategy enables us to produce congenic strains within about half a year. It should provide the fastest protocol for precise definition of the phenotypic effects of genes of interest on desired genetic backgrounds

    Development of assisted reproductive technologies in small animal species for their efficient preservation and production

    No full text

    Supply-Side Barriers to the Use of Public Healthcare Facilities for Childhood Illness Care in Rural Zambia: A Cross-Sectional Study Linking Data from a Healthcare Facility Census to a Household Survey

    Get PDF
    Child mortality due to malaria and diarrhea can be reduced if proper treatment is received timely at healthcare facilities, but various factors hinder this. The present study assessed the associations between the use of public healthcare facilities among febrile/diarrheal children in rural Zambia and supply-side factors (i.e., the distance from the village to the nearest facility and the availability of essential human resources and medical equipment at the facility). Data from the Demographic and Health Survey 2018 and the Health Facility Census 2017 were linked. Generalized linear mixed models were used to assess the associations, controlling for clustering and other variables. The median distances to the nearest facility were 4.5 km among 854 febrile children and 4.6 km among 813 diarrheal children. Children who were over 10 km away from the facility were significantly less likely to use it, compared to those within 5 km (fever group: odds ratio (OR) = 0.36, 95% confidence interval (CI) = 0.20–0.66; diarrhea group: OR = 0.30, 95% CI = 0.18–0.51). The availability of human resources and equipment was, however, not significantly associated with facility use. Poor geographic access could be a critical barrier to facility use among children in rural Zambia
    • …
    corecore