62 research outputs found

    膀胱癌細胞株において、ヘパラナーゼを阻害することにより、細胞浸潤、遊走、接着能を抑制する

    Get PDF
    Heparan sulfate proteoglycan syndecan-1, CD138, is known to be associated with cell proliferation, adhesion, and migration in malignancies. We previously reported that syndecan-1 (CD138) may contribute to urothelial carcinoma cell survival and progression. We investigated the role of heparanase, an enzyme activated by syndecan-1 in human urothelial carcinoma. Using human urothelial cancer cell lines, MGH-U3 and T24, heparanase expression was reduced with siRNA and RK-682, a heparanase inhibitor, to examine changes in cell proliferation activity, induction of apoptosis, invasion ability of cells, and its relationship to autophagy. A bladder cancer development mouse model was treated with RK-682 and the bladder tissues were examined using immunohistochemical analysis for Ki-67, E-cadherin, LC3, and CD31 expressions. Heparanase inhibition suppressed cellular growth by approximately 40% and induced apoptosis. The heparanase inhibitor decreased cell activity in a concentration-dependent manner and suppressed invasion ability by 40%. Inhibition of heparanase was found to suppress autophagy. In N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer mice, treatment with heparanase inhibitor suppressed the progression of cancer by 40%, compared to controls. Immunohistochemistry analysis showed that heparanase inhibitor suppressed cell growth, and autophagy. In conclusion, heparanase suppresses apoptosis and promotes invasion and autophagy in urothelial cancer.博士(医学)・乙第1506号・令和3年3月15日© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    Clinical impact of postoperative loss in psoas major muscle and nutrition index after radical cystectomy for patients with urothelial carcinoma of the bladder

    Get PDF
    Figure S3. Comparison of changes after radical cystectomy between neoadjuvant chemotherapy-treated group and non-treated group. Time-course changes in cross-section area of the psoas major muscle at the level of L3 (a), abdominal skeletal muscle area at the level of L3 (b), the PNI (c) and, the CONUT score (d). Data of neoadjuvant chemotherapy-treated group (red) and non-treated group (blue) are plotted by means ¹ SD. Scores of two groups compared in each time point by the Mann-Whitney U-test. ns, not significant. (TIFF 7424 kb

    Brain Dp140 alters glutamatergic transmission and social behaviour in the mdx52 mouse model of Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice

    Enhancement activity of QS autoinducer analog

    Get PDF
    In this study, we have investigated the effects of the newly synthesized analog of Pseudomonas aeruginosa quorum-sensing autoinducer named AIA-1 (autoinducer analog) against antibiotic-resistant bacteria. In vitro susceptibility and killing assays for P. aeruginosa PAO1ΔoprD mutant and clinical isolates were performed by using antibiotics and AIA-1. In an in vivo assay, a luminescent carbapenem-resistant strain derived from PAO1ΔoprD was injected into neutropenic ICR mice and bioluminescence images were acquired after the treatment with antibiotics and AIA-1. Additionally, we investigated the effects of the combination use against carbapenem- resistant Enterobacteriaceae (CRE). Using killing assays in P. aeruginosa, the survival rates in the presence of antibiotics and AIA-1 significantly decreased in comparison with those with antibiotics alone. Furthermore, dual treatment of biapenem and AIA-1 was more effective than biapenem alone in a mouse infection model. AIA-1 did not change the MICs in P. aeruginosa, suggesting that AIA-1 acts on the mechanism of antibiotic tolerance. Conversely, the MICs of antibiotics decreased in the presence of AIA-1 in some CRE strains, indicating that AIA-1 may require additional mechanism to act on CRE. In conclusion, AIA-1 may be a potent drug for clinical treatment of infections caused by antibiotic-resistant bacteria

    尿路上皮癌微小環境内におけるDisabled Homolog 2 (DAB2) は腫瘍細胞上皮間葉転換を介して遊走能・浸潤能を高める

    Get PDF
    Disabled homolog-2 (DAB2) has been reported to be a tumor suppressor gene. However, a number of contrary studies suggested that DAB2 promotes tumor invasion in urothelial carcinoma of the bladder (UCB). Here, we investigated the clinical role and biological function of DAB2 in human UCB. Immunohistochemical staining analysis for DAB2 was carried out on UCB tissue specimens. DAB2 expression levels were compared with clinicopathological factors. DAB2 was knocked-down by small interfering RNA (siRNA) transfection, and then its effects on cell proliferation, invasion, and migration, and changes to epithelial-mesenchymal transition (EMT)-related proteins were evaluated. In our in vivo assays, tumor-bearing athymic nude mice subcutaneously inoculated with human UCB cells (MGH-U-3 or UM-UC-3) were treated by DAB2-targeting siRNA. Higher expression of DAB2 was associated with higher clinical T category, high tumor grade, and poor oncological outcome. The knock-down of DAB2 decreased both invasion and migration ability and expression of EMT-related proteins. Significant inhibitory effects on tumor growth and invasion were observed in xenograft tumors of UM-UC-3 treated by DAB2-targeting siRNA. Our findings suggested that DAB2 expression was associated with poor prognosis through increased oncogenic properties including tumor proliferation, migration, invasion, and enhancement of EMT in human UCB.博士(医学)・甲第768号・令和3年3月15日© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    Magnetic thickness measurement for various iron steels using magnetic sensor and effect of electromagnetic characteristics

    Get PDF
    The diagnosis and prevention of the deterioration of iron-steel infrastructure has become an important social issue in recent years. The thickness measurement technique (extremely low-frequency eddy current testing (ELECT)) using a magnetic sensor for detecting steel corrosion at extreme frequency ranges has been previously reported. Using the calibration curves based on the correlation between the phase of the detected magnetic signal and the plate thickness, the plate thickness reduction caused by corrosion can be estimated from the detected phase signal. Iron-steel materials have large changes in electromagnetic characteristics; therefore, the reference calibration data for each type of iron-steel are required for plate thickness estimation. In this study, the effect of electromagnetic characteristics on the magnetic thickness measurement was investigated to improve the thickness estimation. Four types of iron-steel plates (SS400, SM400A, SM490A, and SMA400AW) with thicknesses ranging from 1 mm to 18 mm were measured by ELECT, and the phase change at multiple frequencies of each plate were analyzed. The shift in the phase and linearity regions of the calibration curves for each type of steel plate was observed. To analyze this shift phenomenon, the electromagnetic characteristics (permeability μ and conductivity σ) of each type of steel were measured. Compared with the permeability μ and conductivity σ of each steel plate in the applied magnetic field strength range, the product (σμ) for various steel plates decreased in the following order: SM400 > SS400 >SMA400AW > SM490A. The product of μ and σ is related to the skin depth, indicating the electromagnetic wave attenuation and eddy current phase shift in the material. Therefore, each shift in the calibration curve of each type of iron steel is explained by the changes in the parameters σ and μ
    corecore