17 research outputs found

    Stratified Management for Bacterial Infections in Late Preterm and Term Neonates:Current Strategies and Future Opportunities Toward Precision Medicine

    Get PDF
    Bacterial infections remain a major cause of morbidity and mortality in the neonatal period. Therefore, many neonates, including late preterm and term neonates, are exposed to antibiotics in the first weeks of life. Data on the importance of inter-individual differences and disease signatures are accumulating. Differences that may potentially influence treatment requirement and success rate. However, currently, many neonates are treated following a “one size fits all” approach, based on general protocols and standard antibiotic treatment regimens. Precision medicine has emerged in the last years and is perceived as a new, holistic, way of stratifying patients based on large-scale data including patient characteristics and disease specific features. Specific to sepsis, differences in disease susceptibility, disease severity, immune response and pharmacokinetics and -dynamics can be used for the development of treatment algorithms helping clinicians decide when and how to treat a specific patient or a specific subpopulation. In this review, we highlight the current and future developments that could allow transition to a more precise manner of antibiotic treatment in late preterm and term neonates, and propose a research agenda toward precision medicine for neonatal bacterial infections.</p

    Oral and Intravenous Amoxicillin Dosing Recommendations in Neonates:A Pooled Population Pharmacokinetic Study

    Get PDF
    BACKGROUND: There is a lack of evidence on oral amoxicillin pharmacokinetics and exposure in neonates with possible serious bacterial infection (pSBI). We aimed to describe amoxicillin disposition following oral and intravenous administration and to provide dosing recommendations for preterm and term neonates treated for pSBI.METHODS: In this pooled-population pharmacokinetic study, 3 datasets were combined for nonlinear mixed-effects modeling. In order to evaluate amoxicillin exposure following oral and intravenous administration, pharmacokinetic profiles for different dosing regimens were simulated with the developed population pharmacokinetic model. A target of 50% time of the free fraction above the minimal inhibitory concentration (MIC) with an MICECOFF of 8 mg/L (to cover gram-negative bacteria such as Escherichia coli) was used.RESULTS: The cohort consisted of 261 (79 oral, 182 intravenous) neonates with a median (range) gestational age of 35.8 weeks (range, 24.9-42.4) and bodyweight of 2.6 kg (range, 0.5-5). A 1-compartment model with first-order absorption best described amoxicillin pharmacokinetics. Clearance (L/h/kg) in neonates born after 30 weeks' gestation increased with increasing postnatal age (PNA day 10, 1.25-fold; PNA day 20, 1.43-fold vs PNA day 3). Oral bioavailability was 87%. We found that a twice-daily regimen of 50 mg/kg/day is superior to a 3- or 4-times daily schedule in the first week of life for both oral and intravenous administration.CONCLUSIONS: This pooledpopulation pharmacokinetic description of intravenous and oral amoxicillin in neonates provides age-specific dosing recommendations. We conclude that neonates treated with oral amoxicillin in the first weeks of life reach adequate amoxicillin levels following a twice-daily dosing regimen. Oral amoxicillin therapy could therefore be an adequate, cost-effective, and more patient-friendly alternative for neonates worldwide.</p

    Relapsing/remitting type 1 diabetes

    Get PDF
    Aims/hypothesis: Type 1 diabetes is believed to be an autoimmune disease associated with irreversible loss of insulin secretory function that follows a chronic progressive course. However, it has been speculated that relapsing/remitting disease progression may occur in type 1 diabetes. Methods: We report the case of an 18-year-old girl with Graves’ disease, chronic inflammatory demyelinating polyneuropathy (CIDP) and multiple islet autoantibodies, presenting with relapsing/remitting hyperglycaemia. Peripheral blood mononuclear cells were analysed for islet autoimmunity. Results: There were two instances of hyperglycaemia relapse during CIDP flare-ups that required insulin therapy and remitted after i.v. immunoglobulin (IVIG) therapy improving neurological symptoms. A diagnosis of type 1 diabetes was assigned on the basis of insulin need, HbA1c and islet autoantibodies. Insulin requirements disappeared following IVIG treatment and peaked during CIDP flare-ups. Pro- and anti-inflammatory cytokine responses were noted against islet autoantigens. Conclusions/interpretation: We provide clinical evidence of relapsing/remitting type 1 diabetes associated with IVIG treatment and the regulation of islet autoimmunity. Despite sufficient residual beta cell mass, individuals can experience episodes of impaired glycaemia control. This disconnect between beta cell mass and function highlighted by our case may have implications for the use of beta cell function as the primary endpoint for immune intervention trials aiming to protect beta cell mass rather than function. Immune modulation may restore beta cell function and glycaemic control

    Relapsing/remitting type 1 diabetes

    No full text
    Aims/hypothesis: Type 1 diabetes is believed to be an autoimmune disease associated with irreversible loss of insulin secretory function that follows a chronic progressive course. However, it has been speculated that relapsing/remitting disease progression may occur in type 1 diabetes. Methods: We report the case of an 18-year-old girl with Graves’ disease, chronic inflammatory demyelinating polyneuropathy (CIDP) and multiple islet autoantibodies, presenting with relapsing/remitting hyperglycaemia. Peripheral blood mononuclear cells were analysed for islet autoimmunity. Results: There were two instances of hyperglycaemia relapse during CIDP flare-ups that required insulin therapy and remitted after i.v. immunoglobulin (IVIG) therapy improving neurological symptoms. A diagnosis of type 1 diabetes was assigned on the basis of insulin need, HbA1c and islet autoantibodies. Insulin requirements disappeared following IVIG treatment and peaked during CIDP flare-ups. Pro- and anti-inflammatory cytokine responses were noted against islet autoantigens. Conclusions/interpretation: We provide clinical evidence of relapsing/remitting type 1 diabetes associated with IVIG treatment and the regulation of islet autoimmunity. Despite sufficient residual beta cell mass, individuals can experience episodes of impaired glycaemia control. This disconnect between beta cell mass and function highlighted by our case may have implications for the use of beta cell function as the primary endpoint for immune intervention trials aiming to protect beta cell mass rather than function. Immune modulation may restore beta cell function and glycaemic control

    Oral antibiotics for neonatal infections: a systematic review and meta-analysis

    No full text
    BACKGROUND: Worldwide many neonates suffer from bacterial infections. Adequate treatment is important but is associated with prolonged hospitalization for intravenous administration. In older children, oral switch therapy has been proven effective and safe for several indications and is now standard care. OBJECTIVES: To evaluate the currently available evidence on pharmacokinetics, safety and efficacy of oral antibiotics and oral switch therapy in neonates (0-28 days old). METHODS: We performed systematic searches in Medline, Embase.com, Cochrane, Google Scholar and Web of Science. Studies were eligible if they described the use of oral antibiotics in neonates (0-28 days old), including antibiotic switch studies and pharmacological studies. RESULTS: Thirty-one studies met the inclusion criteria. Compared with parenteral administration, oral antibiotics generally reach their maximum concentration later and have a lower bioavailability, but in the majority of cases adequate serum levels for bacterial killing are reached. Furthermore, studies on efficacy of oral antibiotics showed equal relapse rates (OR 0.95; 95% CI 0.79-1.16; I2 0%) or mortality (OR 1.11; 95% CI 0.72-1.72; I2 0%). Moreover, a reduction in hospital stay was observed. CONCLUSIONS: Oral antibiotics administered to neonates are absorbed and result in adequate serum levels, judged by MICs of relevant pathogens, over time. Efficacy studies are promising but robust evidence is lacking, most importantly because in many cases clinical efficacy and safety are not properly addressed. Early oral antibiotic switch therapy in neonates could be beneficial for both families and healthcare systems. There is a need for additional well-designed trials in different settings.status: publishe

    Pharmacokinetics of Clavulanic Acid in the Pediatric Population: A Systematic Literature Review

    Get PDF
    BACKGROUND AND OBJECTIVE: Clavulanic acid is a commonly used β-lactam inhibitor in pediatrics for a variety of infections. Clear insight into its mode of action is lacking, however, and a target has not been identified. The dosing of clavulanic acid is currently based on that of the partner drug (amoxicillin or ticarcillin). Still, proper dosing of the compound is needed because clavulanic acid has been associated with adverse effects. In this systematic review, we aim to describe the current literature on the pharmacokinetics of clavulanic acid in the pediatric population METHODS: We performed a systematic search in MEDLINE, Embase.com, Cochrane Central, Google Scholar, and Web of Science. We included all published studies reporting pharmacokinetic data on clavulanic acid in neonates and children 0-18 years of age. RESULTS: The search resulted in 18 original studies that met the inclusion criteria. In general, the variation in drug exposure was large, which can be partly explained by differences in disease state, route of administration, or age. Unfortunately, the studies' limited background information hampered in-depth assessment of the observed variability. CONCLUSION: The pharmacokinetics of clavulanic acid in pediatric patients is highly variable, similar to reports in adults, but more pronounced. Significant knowledge gaps remain with regard to the population-specific explanation for this variability. Model-based pharmacokinetic studies that address both maturational and disease-specific changes in the pediatric population are therefore needed. Furthermore, additional pharmacodynamic studies are needed to define a clear target. The combined outcomes will eventually lead to pharmacokinetic-pharmacodynamic modeling of clavulanic acid and targeted exposure. CLINICAL TRIAL REGISTRATION: PROSPERO CRD42020137253

    RAIN study: a protocol for a randomised controlled trial evaluating efficacy, safety and cost-effectiveness of intravenous-to-oral antibiotic switch therapy in neonates with a probable bacterial infection

    No full text
    INTRODUCTION: High morbidity and mortality rates of proven bacterial infection are the main reason for substantial use of intravenous antibiotics in neonates during the first week of life. In older children, intravenous-to-oral switch after 48 hours of intravenous therapy has been shown to have many advantages and is nowadays commonly practised. We, therefore, aim to evaluate the effectiveness, safety and cost-effectiveness of an early intravenous-to-oral switch in neonates with a probable bacterial infection. METHODS AND ANALYSIS: We present a protocol for a multicentre randomised controlled trial assessing the non-inferiority of an early intravenous-to-oral antibiotic switch compared with a full course of intravenous antibiotics in neonates (0-28 days of age) with a probable bacterial infection. Five hundred and fifty patients will be recruited in 17 hospitals in the Netherlands. After 48 hours of intravenous treatment, they will be assigned to either continue with intravenous therapy for another 5 days (control) or switch to amoxicillin/clavulanic acid suspension (intervention). Both groups will be treated for a total of 7 days. The primary outcome will be bacterial (re)infection within 28 days after treatment completion. Secondary outcomes are the pharmacokinetic profile of oral amoxicillin/clavulanic acid, the impact on quality of life, cost-effectiveness, impact on microbiome development and additional yield of molecular techniques in diagnosis of probable bacterial infection. ETHICS AND DISSEMINATION: This study has been approved by the Medical Ethics Committee of the Erasmus Medical Centre. Results will be presented in peer-reviewed journals and at international conferences. TRIAL REGISTRATION NUMBER: NCT03247920.status: publishe

    Oral and intravenous amoxicillin dosing recommendations in neonates: A pooled population pharmacokinetic study

    No full text
    Background: There is a lack of evidence on oral amoxicillin pharmacokinetics and exposure in neonates with possible serious bacterial infection (pSBI). We aimed to describe amoxicillin disposition following oral and intravenous administration and to provide dosing recommendations for preterm and term neonates treated for pSBI. Methods: In this pooled-population pharmacokinetic study, 3 datasets were combined for nonlinear mixed-effects modeling. In order to evaluate amoxicillin exposure following oral and intravenous administration, pharmacokinetic profiles for different dosing regimens were simulated with the developed population pharmacokinetic model. A target of 50% time of the free fraction above the minimal inhibitory concentration (MIC) with an MICECOFF of 8 mg/L (to cover gram-negative bacteria such as Escherichia coli) was used. Results: The cohort consisted of 261 (79 oral, 182 intravenous) neonates with a median (range) gestational age of 35.8 weeks (range, 24.9-42.4) and bodyweight of 2.6 kg (range, 0.5-5). A 1-compartment model with first-order absorption best described amoxicillin pharmacokinetics. Clearance (L/h/kg) in neonates born after 30 weeks\u27 gestation increased with increasing postnatal age (PNA day 10, 1.25-fold; PNA day 20, 1.43-fold vs PNA day 3). Oral bioavailability was 87%. We found that a twice-daily regimen of 50 mg/kg/day is superior to a 3- or 4-times daily schedule in the first week of life for both oral and intravenous administration. Conclusions: This pooledpopulation pharmacokinetic description of intravenous and oral amoxicillin in neonates provides age-specific dosing recommendations. We conclude that neonates treated with oral amoxicillin in the first weeks of life reach adequate amoxicillin levels following a twice-daily dosing regimen. Oral amoxicillin therapy could therefore be an adequate, cost-effective, and more patient-friendly alternative for neonates worldwid
    corecore