30 research outputs found

    Synaptic Zn2+ potentiates the effects of cocaine on striatal dopamine neurotransmission and behavior

    Full text link
    Cocaine binds to the dopamine (DA) transporter (DAT) to regulate cocaine reward and seeking behavior. Zinc (Zn2+) also binds to the DAT, but the in vivo relevance of this interaction is unknown. We found that Zn2+ concentrations in postmortem brain (caudate) tissue from humans who died of cocaine overdose were significantly lower than in control subjects. Moreover, the level of striatal Zn2+ content in these subjects negatively correlated with plasma levels of benzoylecgonine, a cocaine metabolite indicative of recent use. In mice, repeated cocaine exposure increased synaptic Zn2+ concentrations in the caudate putamen (CPu) and nucleus accumbens (NAc). Cocaine-induced increases in Zn2+ were dependent on the Zn2+ transporter 3 (ZnT3), a neuronal Zn2+ transporter localized to synaptic vesicle membranes, as ZnT3 knockout (KO) mice were insensitive to cocaine-induced increases in striatal Zn2+. ZnT3 KO mice showed significantly lower electrically evoked DA release and greater DA clearance when exposed to cocaine compared to controls. ZnT3 KO mice also displayed significant reductions in cocaine locomotor sensitization, conditioned place preference (CPP), self-administration, and reinstatement compared to control mice and were insensitive to cocaine-induced increases in striatal DAT binding. Finally, dietary Zn2+ deficiency in mice resulted in decreased striatal Zn2+ content, cocaine locomotor sensitization, CPP, and striatal DAT binding. These results indicate that cocaine increases synaptic Zn2+ release and turnover/metabolism in the striatum, and that synaptically released Zn2+ potentiates the effects of cocaine on striatal DA neurotransmission and behavior and is required for cocaine-primed reinstatement. In sum, these findings reveal new insights into cocaine's pharmacological mechanism of action and suggest that Zn2+ may serve as an environmentally derived regulator of DA neurotransmission, cocaine pharmacodynamics, and vulnerability to cocaine use disorders

    Coimmobilization of Acetylcholinesterase and Choline Oxidase on Gold Nanoparticles: Stoichiometry, Activity, and Reaction Efficiency

    No full text
    Hybrid structures constructed from biomolecules and nanomaterials have been used in catalysis and bioanalytical applications. In the design of many chemically selective biosensors, enzymes conjugated to nanoparticles or carbon nanotubes have been used in functionalization of the sensor surface for enhancement of the biosensor functionality and sensitivity. The conditions for the enzyme:nanomaterial conjugation should be optimized to retain maximal enzyme activity, and biosensor effectiveness. This is important as the tertiary structure of the enzyme is often altered when immobilized and can significantly alter the enzyme catalytic activity. Here we show that characterization of a two-enzyme:gold nanoparticle (AuNP) conjugate stoichiometry and activity can be used to gauge the effectiveness of acetylcholine detection by acetylcholine esterase (AChE) and choline oxidase (ChO). This was done by using an analytical approach to quantify the number of enzymes bound per AuNP and monitor the retained enzyme activity after the enzyme:AuNP synthesis. We found that the amount of immobilized enzymes differs from what would be expected from bulk solution chemistry. This analysis was further used to determine the optimal ratio of AChE:ChO added at synthesis to achieve optimum sequential enzyme activity for the enzyme:AuNP conjugates, and reaction efficiencies of greater than 70%. We here show that the knowledge of the conjugate stoichiometry and retained enzyme activity can lead to more efficient detection of acetylcholine by controlling the AChE:ChO ratio bound to the gold nanoparticle material. This approach of optimizing enzyme gold nanoparticle conjugates should be of great importance in the architecture of enzyme nanoparticle based biosensors to retain optimal sensor sensitivity

    Electrochemistry of Single-Vesicle Events

    No full text
    Neuronal transmission relies on electrical signals and the transfer of chemical signals from one neuron to another. Chemical messages are transmitted from presynaptic neurons to neighboring neurons through the triggered fusion of neurotransmitter-filled vesicles with the cell plasma membrane. This process, known as exocytosis, involves the rapid release of neurotransmitter solutions that are detected with high affinity by the postsynaptic neuron. The type and number of neurotransmitters released and the frequency of vesicular events govern brain functions such as cognition, decision making, learning, and memory. Therefore, to understand neurotransmitters and neuronal function, analytical tools capable of quantitative and chemically selective detection of neurotransmitters with high spatiotemporal resolution are needed. Electrochemistry offers powerful techniques that are sufficiently rapid to allow for the detection of exocytosis activity and provides quantitative measurements of vesicle neurotransmitter content and neurotransmitter release from individual vesicle events. In this review, we provide an overview of the most commonly used electrochemical methods for monitoring single-vesicle events, including recent developments and what is needed for future research

    Analytical tools to monitor exocytosis: A focus on new fluorescent probes and methods

    No full text
    A great deal of research has been focused on unraveling the processes governing the exocytotic pathway and the extent of release during the process. Arguments abound for and against both the occurrence and significance of full release during exocytosis and partial release including kiss-and-run events. Several optical methods to directly observe the exocytosis process have been developed and here we focus on fluorescence methods and probes for this work. Although fluorescence imaging has been used for cell experiments for decades, in the last two decades a plethora of new approaches have arrived on the scene. These include application of new microscopy techniques, like total internal reflectance and stimulated emission depletion that are offering new ways to circumvent the limits of far field microscopy with a diffraction limit of 200 nm, and allow tracking of single synaptic vesicles. For selective imaging of synaptic vesicles the introduction of methods to stain the vesicular compartment has involved developing probes of the vesicular membrane and intravesicular solution, nanoparticle quantum dots that can be observed during exocytosis but not via the fusion pore, and fluorescent false neurotransmitters

    Enzyme:Nanoparticle Bioconjugates with Two Sequential Enzymes: Stoichiometry and Activity of Malate Dehydrogenase and Citrate Synthase on Au Nanoparticles

    No full text
    We report the synthesis and characterization of bioconjugates in which the enzymes malate dehydrogenase (MDH) and/or citrate synthase (CS) were adsorbed to 30 nm diameter Au nanoparticles. Enzyme:Au stoichiometry and kinetic parameters (specific activity, <i>k</i><sub>cat</sub>, <i>K</i><sub>M,</sub> and activity per particle) were determined for MDH:Au, CS:Au, and three types of dual-activity MDH/CS:Au bioconjugates. For single-activity bioconjugates (MDH:Au and CS:Au), the number of enzyme molecules adsorbed per particle was dependent upon the enzyme concentration in solution, with multilayers forming at high enzyme:Au solution ratios. The specific activity of adsorbed enzyme increased with increasing number adsorbed per particle for CS:Au, but was less sensitive to stoichiometry for MDH:Au. Dual activity bioconjugates were prepared in three ways: (1) by adsorption of MDH followed by CS, (2) by adsorption of CS followed by MDH, and (3) by coadsorption of both enzymes from the same solution. The resulting bioconjugates differed substantially in the number of enzyme molecules adsorbed per particle, the specific activity of the adsorbed enzymes, and also the enzymatic activity per particle. Bioconjugates formed by adding CS to the Au nanoparticles before MDH was added exhibited higher specific activities for both enzymes than those formed by adding the enzymes in the reverse order. These bioconjugates also had 3-fold higher per-particle sequential activity for conversion of malate to citrate, despite substantially fewer copies of both enzymes present

    A selected review of recent advances in the study of neuronal circuits using fiber photometry

    No full text
    To understand the correlation between animal behaviors and the underlying neuronal circuits, it is important to monitor and record neurotransmission in the brain of freely moving animals. With the development of fiber photometry, based on genetically encoded biosensors, and novel electrochemical biosensors, it is possible to measure some key neuronal transmission events specific to cell types or neurotransmitters of interest with high temporospatial resolution. This review discusses the recent advances and achievements of these two techniques in the study of neurotransmission in animal models and how they can be used to complement other techniques in the neuroscientist\u27s toolbox
    corecore