25 research outputs found

    Improved disease resistance in dairy cattle: Correlation of health disorders with measures of immune status; and Genetic improvement for disease resistance by identifying sires whose daughters have fewer disease problems

    Get PDF
    In Iowa, dairy cattle are most commonly raised on land having rolling topography. Because the nitrogen contributions of alfalfa, their typical forage, and manure reduce the need for commercial fertilizer application, dairy cattle make a strong contribution to a more sustainable agricultural system. The high productivity of the dairy cattle, combined with the significant savings in purchased inputs, offers some producers a financially stable, environmentally preferable alternative to more traditional row-cropping approaches

    High-impact animal health research conducted at the USDA’s National Animal Disease Center

    Get PDF
    Commissioned by President Dwight Eisenhower in 1958 and opened with a dedication ceremony in December 1961, the USDA, Agricultural Research Service (ARS), National Animal Disease Center (NADC) celebrated its 50-year anniversary in November 2011. Over these 50 years, the NADC established itself among the world’s premier animal health research centers. Its historic mission has been to conduct basic and applied research on selected endemic diseases of economic importance to the U.S. livestock and poultry industries. Research from NADC has impacted control or management efforts on nearly every major animal disease in the United States since 1961. For example, diagnostic tests and vaccines developed by NADC scientists to detect and prevent hog cholera were integral in the ultimate eradication of this costly swine disease from the U.S. Most major veterinary vaccines for critical diseases such as brucellosis and leptospirosis in cattle, porcine respiratory and reproductive syndrome (PRRS), porcine parvovirus and influenza in swine had their research origins or were developed and tested at the NADC. Additional discoveries made by NADC scientists have also resulted in the development of a nutritional approach and feed additives to prevent milk fever in transition dairy cattle. More recently, NADC’s archive of historic swine influenza viruses combined with an established critical mass of influenza research expertise enabled NADC researchers to lead an effective national research response to the pandemic associated with the novel 2009 H1N1 influenza virus. This review commemorates some of the key animal health contributions in NADC’s first 50 years, recaps the newly completed modernization of the center into new facilities, and offers highlights of the ongoing research that will define NADC’s mission going forward

    Efficacy in Pigs of Inactivated and Live Attenuated Influenza Virus Vaccines against Infection and Transmission of an Emerging H3N2 Similar to the 2011-2012 H3N2v

    Get PDF
    Vaccines provide a primary means to limit disease but may not be effective at blocking infection and pathogen transmission. The objective of the present study was to evaluate the efficacy of commercial inactivated swine influenza A virus (IAV) vaccines and experimental live attenuated influenza virus (LAIV) vaccines against infection with H3N2 virus and subsequent indirect transmission to naive pigs. The H3N2 virus evaluated was similar to the H3N2v detected in humans during 2011-2012, which was associated with swine contact at agricultural fairs. One commercial vaccine provided partial protection measured by reduced nasal shedding; however, indirect contacts became infected, indicating that the reduction in nasal shedding did not prevent aerosol transmission. One LAIV vaccine provided complete protection, and none of the indirect-contact pigs became infected. Clinical disease was not observed in any group, including nonvaccinated animals, a consistent observation in pigs infected with contemporary reassortant H3N2 swine viruses. Serum hemagglutination inhibition antibody titers against the challenge virus were not predictive of efficacy; titers following vaccination with a LAIV that provided sterilizing immunity were below the level considered protective, yet titers in a commercial vaccine group that was not protected were above that level. While vaccination with currently approved commercial inactivated products did not fully prevent transmission, certain vaccines may provide a benefit by limitating shedding, transmission, and zoonotic spillover of antigenically similar H3N2 viruses at agriculture fairs when administered appropriately and used in conjunction with additional control measures

    The Presence of Alpha Interferon at the Time of Infection Alters the Innate and Adaptive Immune Responses to Porcine Reproductive and Respiratory Syndrome Virus

    Get PDF
    Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating and costly diseases to the swine industry worldwide. Overall, the adaptive immune response to PRRS virus (PRRSV) is weak, which results in delayed elimination of virus from the host and inferior vaccine protection. PRRSV has been shown to induce a meager alpha interferon (IFN-α) response, and we hypothesized that elevated IFN-α levels early in infection would shorten the induction time and increase elements of the adaptive immune response. To test this, we measured both antibody and cell-mediated immunity in pigs after the administration of a nonreplicating human adenovirus type 5 vector expressing porcine IFN-α (Ad5–pIFN-α) at the time of PRRSV infection and compared the results to those for pigs infected with PRRSV alone. Viremia was delayed, and there was a decrease in viral load in the sera of pigs administered the Ad5–pIFN-α. Although seroconversion was slightly delayed in pigs receiving Ad5–pIFN-α, probably due to the early reduction in viral replication, little difference in the overall or neutralizing antibody response was seen. However, there was an increase in the number of virus-specific IFN-γ-secreting cells detected in the pigs receiving Ad5–pIFN-α, as well as an altered cytokine profile in the lung at 14 days postinfection, indicating that the presence of IFN-α at the time of infection can alter innate and adaptive immune responses to PRRSV
    corecore