71 research outputs found

    Analytical vectorial structure of non-paraxial four-petal Gaussian beams in the far field

    Full text link
    The analytical vectorial structure of non-paraxial four-petal Gaussian beams(FPGBs) in the far field has been studied based on vector angular spectrum method and stationary phase method. In terms of analytical electromagnetic representations of the TE and TM terms, the energy flux distributions of the TE term, the TM term, and the whole beam are derived in the far field, respectively. According to our investigation, the FPGBs can evolve into a number of small petals in the far field. The number of the petals is determined by the order of input beam. The physical pictures of the FPGBs are well illustrated from the vectorial structure, which is beneficial to strengthen the understanding of vectorial properties of the FPGBs

    Vectorial structure of a hard-edged-diffracted four-petal Gaussian beam in the far field

    Full text link
    Based on the vector angular spectrum method and the stationary phase method and the fact that a circular aperture function can be expanded into a finite sum of complex Gaussian functions, the analytical vectorial structure of a four-petal Gaussian beam (FPGB) diffracted by a circular aperture is derived in the far field. The energy flux distributions and the diffraction effect introduced by the aperture are studied and illustrated graphically. Moreover, the influence of the f-parameter and the truncation parameter on the nonparaxiality is demonstrated in detail. In addition, the analytical formulas obtained in this paper can degenerate into un-apertured case when the truncation parameter tends to infinity. This work is beneficial to strengthen the understanding of vectorial properties of the FPGB diffracted by a circular aperture

    A Potent, Selective and Cell-Active Allosteric Inhibitor of Protein Arginine Methyltransferase 3 (PRMT3)

    Get PDF
    PRMT3 catalyzes the asymmetric dimethylation of arginine residues of various proteins. It is essential for maturation of ribosomes, may have a role in lipogenesis, and is implicated in several diseases. A potent, selective, and cell- active PRMT3 inhibitor would be a valuable tool for further investigating PRMT3 biology. Here we report the discovery of the first PRMT3 chemical probe, SGC707, by structure-based optimization of the allosteric PRMT3 inhibitors we reported previously, and thorough characterization of this probe in biochemical, biophysical, and cellular assays. SGC707 is a potent PRMT3 inhibitor (IC50 = 31 ± 2 nm, KD = 53 ± 2 nm) with outstanding selectivity (selective against 31 other methyltransferases and more than 250 non-epigenetic targets). The mechanism of action studies and crystal structure of the PRMT3-SGC707 complex confirm the allosteric inhibition mode. Importantly, SGC707 engages PRMT3 and potently inhibits its methyltransferase activity in cells. It is also bioavailable and suitable for animal studies. This well- characterized chemical probe is an excellent tool to further study the role of PRMT3 in health and disease

    <i>In Vivo</i> Biomechanical Measurements of the Cornea

    No full text
    In early corneal examinations, the relationships between the morphological and biomechanical features of the cornea were unclear. Although consistent links have been demonstrated between the two in certain cases, these are not valid in many diseased states. An accurate assessment of the corneal biomechanical properties is essential for understanding the condition of the cornea. Studies on corneal biomechanics in vivo suggest that clinical problems such as refractive surgery and ectatic corneal disease are closely related to changes in biomechanical parameters. Current techniques are available to assess the mechanical characteristics of the cornea in vivo. Accordingly, various attempts have been expended to obtain the relevant mechanical parameters from different perspectives, using the air-puff method, ultrasound, optical techniques, and finite element analyses. However, a measurement technique that can comprehensively reflect the full mechanical characteristics of the cornea (gold standard) has not yet been developed. We review herein the in vivo measurement techniques used to assess corneal biomechanics, and discuss their advantages and limitations to provide a comprehensive introduction to the current state of technical development to support more accurate clinical decisions

    One Step Beyond Myopic Probing Policy: A Heuristic Lookahead Policy for Multi-Channel Opportunistic Access

    No full text
    International audienc

    Behavior of magnetic field and eddy current in a magnetostriction based bi-layered composite

    No full text
    In this paper, we presented a theoretical method for studying the behavior of magnetic field intensity and eddy current inside a magnetostriction based bi-layered composite. Firstly, the mathematical model for the electromagnetic field in the composite was established. Then, the governing equation for determining the magnetic field intensity and eddy current was solved. Furthermore, the effect of the composite’s conductivity on the magnetic field intensity and eddy current were discussed. Lastly, by comparing with the well known R.L. Stoll’s equation, the magnetic field intensity calculated based on our equation showed a less than 0.5% error

    Myopic policy for opportunistic access in cognitive radio networks by exploiting primary user feedbacks

    No full text
    International audienc
    • …
    corecore