247 research outputs found

    Interferon Signaling Is Frequently Downregulated in Melanoma

    Get PDF
    Immune checkpoint inhibitors that block the programmed cell death protein 1/PD-L1 pathway have significantly improved the survival of patients with advanced melanoma. Immunotherapies are only effective in 15–40% of melanoma patients and resistance is associated with defects in antigen presentation and interferon signaling pathways. In this study, we examined interferon-γ (IFNγ) responses in a large panel of immune checkpoint inhibitor-naïve melanoma cells with defined genetic drivers; BRAF-mutant (n = 11), NRAS-mutant (n = 10), BRAF/NRAS wild type (n = 10), and GNAQ/GNA11-mutant uveal melanomas (UVMs) (n = 8). Cell surface expression of established IFNγ downstream targets PD-L1, PD-L2, HLA-A, -B, and -C, HLA-DR, and nerve growth factor receptor (NGFR) were analyzed by flow cytometry. Basal cellular expression levels of HLA-A, -B, -C, HLA-DR, NGFR, and PD-L2 predicted the levels of IFNγ-stimulation, whereas PD-L1 induction was independent of basal expression levels. Only 13/39 (33%) of the melanoma cell lines tested responded to IFNγ with potent induction of all targets, indicating that downregulation of IFNγ signaling is common in melanoma. In addition, we identified two well-recognized mechanisms of immunotherapy resistance, the loss of β-2-microglobulin and interferon gamma receptor 1 expression. We also examined the influence of melanoma driver oncogenes on IFNγ signaling and our data suggest that UVM have diminished capacity to respond to IFNγ, with lower induced expression of several targets, consistent with the disappointing response of UVM to immunotherapies. Our results demonstrate that melanoma responses to IFNγ are heterogeneous, frequently downregulated in immune checkpoint inhibitor-naïve melanoma and potentially predictive of response to immunotherapy

    Oncogenic B-RAFV600E Signaling Induces the T-Box3 Transcriptional Repressor to Repress E-Cadherin and Enhance Melanoma Cell Invasion

    Get PDF
    Approximately 50% of melanomas require oncogenic B-RAFV600E signaling for proliferation, survival, and metastasis, and the use of highly selective B-RAF inhibitors has yielded remarkable, although short-term, clinical responses. Reactivation of signaling downstream of B-RAF is frequently associated with acquired resistance to B-RAF inhibitors, and the identification of B-RAF targets may therefore provide new strategies for managing melanoma. In this report, we applied whole-genome expression analyses to reveal that oncogenic B-RAFV600E regulates genes associated with epithelial–mesenchymal transition in normal cutaneous human melanocytes. Most prominent was the B-RAF-mediated transcriptional repression of E-cadherin, a keratinocyte–melanoma adhesion molecule whose loss is intimately associated with melanoma invasion and metastasis. Here we identify a link between oncogenic B-RAF, the transcriptional repressor Tbx3, and E-cadherin. We show that B-RAFV600E induces the expression of Tbx3, which potently represses E-cadherin expression in melanocytes and melanoma cells. Tbx3 expression is normally restricted to developmental embryonic tissues and promoting cell motility, but it is also aberrantly increased in various cancers and has been linked to tumor cell invasion and metastasis. We propose that this B-RAF/Tbx3/E-cadherin pathway has a critical role in promoting the metastasis of B-RAF-mutant melanomas

    Evaluation of stromal HGF immunoreactivity as a biomarker for melanoma response to RAF inhibitors

    Get PDF
    Of more than 150,000 published studies evaluating new biomarkers, fewer than 100 biomarkers have been implemented for patient care[1]. One reason for this is lack of rigorous testing by the medical community to validate claims for biomarker clinical relevance, and potential reluctance to publish negative results when confirmation is not obtained. Here we sought to determine the utility and reproducibility of immunohistochemical detection of hepatocyte growth factor (HGF) in melanoma tissue, an approach of potential assistance in defining patients with innate resistance to BRAF inhibitor therapy[2]. To this end, a published and a revised method that retained sensitivity but with greater specificity for HGF detection, were evaluated in cells known to endogenously express HGF, models where HGF is upregulated via cytokine induction, and via overexpression by gene transfection. Consequent patient evaluation in collaboration with the Melanoma Institute Australia of a cohort of 41 melanoma specimens with extensive clinical annotation failed to validate HGF immunohistochemistry as a predictor of response to BRAF inhibitors. Targeted therapies for advanced melanoma[3–5] and other cancers show great promise, and rigorous validation studies are thus indicated for approaches that seek to personalize such therapies in order to maximize therapeutic efficacy

    Future perspectives in melanoma research: meeting report from the “Melanoma Bridge”, Napoli, December 5th-8th 2013

    Get PDF
    The fourth “Melanoma Bridge Meeting” took place in Naples, December 5 to 8th, 2013. The four topics discussed at this meeting were: Diagnosis and New Procedures, Molecular Advances and Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent research in tumor biology and immunology has led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors, like BRAF and MEK inhibitors, as well as other signaling pathways inhibitors, are being tested in metastatic melanoma either as monotherapy or in combination, and have yielded promising results. Improved survival rates have also been observed with immune therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in melanoma as well. This meeting’s specific focus was on advances in targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. Significant consideration was given to issues surrounding the development of novel therapeutic targets as further study of patterns of resistance to both immunologic and targeted drugs are paramount to future drug development to guide existing and future therapies. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma

    Patterns of response in patients with advanced melanoma treated with Pembrolizumab (MK-3475) and evaluation of immune-related response criteria (irRC)

    Get PDF
    Unique patterns of response have been observed with immunotherapies. Notably, objective response and prolonged disease stabilization can occur after an initial increase in tumor burden. irRC were developed to better characterize response to immunotherapy based on data for Ipilimumab. We previously showed that patients with melanoma treated with the anti-PD-1 monoclonal antibody Pembrolizumab may also experience unique patterns of response and that conventional response criteria may underestimate the therapeutic benefit of Pembrolizumab [1]. We updated our initial analysis to include an additional 6 months of follow-up

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • …
    corecore