380 research outputs found

    Magnetic Susceptibility of Collinear and Noncollinear Heisenberg Antiferromagnets

    Full text link
    Predictions of the anisotropic magnetic susceptibility chi below the antiferromagnetic (AFM) ordering temperatures TN of local moment Heisenberg AFMs have been made previously using molecular field theory (MFT) but are very limited in their applicability. Here a MFT calculation of chi(T<=TN) is presented for a wide variety of collinear and noncollinear Heisenberg AFMs containing identical crystallographically equivalent spins without recourse to magnetic sublattices. The results are expressed in terms of directly measurable experimental parameters and are fitted with no adjustable parameters to experimental chi(T<=TN) data from the literature for several collinear and noncollinear AFMs. The influence of spin correlations and fluctuations beyond MFT is quantified by the deviation of the theory from the data. The origin of the universal chi(T<=TN) observed for triangular lattice AFMs exhibiting coplanar noncollinear 120 degree AFM ordering is clarified.Comment: 5 pages, 5 figure

    Renormalization of the spin-wave spectrum in three-dimentional ferromagnets with dipolar interaction

    Full text link
    Renormalization of the spin-wave spectrum is discussed in a cubic ferromagnet with dipolar forces at TCT0T_C\gg T\ge0. First 1/S-corrections are considered in detail to the bare spectrum ϵk=Dk2(Dk2+Sω0sin2θk)\epsilon_{\bf k} = \sqrt{Dk^2 (Dk^2 + S\omega_0\sin^2\theta_{\bf k})}, where DD is the spin-wave stiffness, θk\theta_{\bf k} is the angle between k\bf k and the magnetization and ω0\omega_0 is the characteristic dipolar energy. In accordance with previous results we obtain the thermal renormalization of constants DD and ω0\omega_0 in the expression for the bare spectrum. Besides, a number of previously unknown features are revealed. We observe terms which depend on azimuthal angle of the momentum k\bf k. It is obtained an isotropic term proportional to kk which makes the spectrum linear rather than quadratic when sinθk=0\sin\theta_{\bf k}=0 and kω0/Dk \ll \omega_0/D. In particular a spin-wave gap proportional to sinθk\sin\theta_{\bf k} is observed. Essentially, thermal contribution from the Hartree-Fock diagram to the isotropic correction as well as to the spin-wave gap are proportional to the demagnetizing factor in the direction of domain magnetization. This nontrivial behavior is attributed to the long-range nature of the dipolar interaction. It is shown that the gap screens infrared singularities of the first 1/S-corrections to the spin-wave stiffness and longitudinal dynamical spin susceptibility (LDSS) obtained before. We demonstrate that higher order 1/S-corrections to these quantities are small at Tω0T\ll\omega_0. However the analysis of the entire perturbation series is still required to derive the spectrum and LDSS when Tω0T\gg\omega_0.Comment: 11 pages, 1 figur

    Steady-State Properties of Single-File Systems with Conversion

    Get PDF
    We have used Monte-Carlo methods and analytical techniques to investigate the influence of the characteristic parameters, such as pipe length, diffusion, adsorption, desorption and reaction rate constants on the steady-state properties of Single-File Systems with a reaction. We looked at cases when all the sites are reactive and when only some of them are reactive. Comparisons between Mean-Field predictions and Monte-Carlo simulations for the occupancy profiles and reactivity are made. Substantial differences between Mean-Field and the simulations are found when rates of diffusion are high. Mean-Field results only include Single-File behavior by changing the diffusion rate constant, but it effectively allows passing of particles. Reactivity converges to a limit value if more reactive sites are added: sites in the middle of the system have little or no effect on the kinetics. Occupancy profiles show approximately exponential behavior from the ends to the middle of the system.Comment: 15 pages, 20 figure

    Finite Line Relief Well System Design for Dams and Levees

    Get PDF
    An Analytical Method is Commonly Used to Design Relief Well Systems by Assuming the Well Line Extends an Infinite Distance Parallel to the Dam or Levee. This Assumption May Be Met in Some Cases, But When a Well Line is of Finite Length, This Can Severely Underestimate Excess Heads. Although These Consequences Have Been Historically Recognized, a Practical Graph-Based Analytical Approach for Finite Well Line Design Has Not Been Developed. Finite Well Lines Exist and Continue to Be Installed at Many Locations, So This Study Developed a Practical Design Method for Such Systems. Analytical Solutions and Numerical Models Were Used to Improve Understanding of the Performance of Partial and Full Penetration Finite Well Systems. Performance Was Found to Be Dependent on Well System Geometry, the Ratios of Effective Seepage Entry and Exit Distances to Well Spacing, and the Number of Wells. Model Results Were Used to Develop New Uplift Factors that More Accurately Define Excess Heads Along and Landward of Finite Well Systems that Fully or Partially Penetrate the Aquifer

    Bose-Einstein condensation in antiferromagnets close to the saturation field

    Full text link
    At zero temperature and strong applied magnetic fields the ground sate of an anisotropic antiferromagnet is a saturated paramagnet with fully aligned spins. We study the quantum phase transition as the field is reduced below an upper critical Hc2H_{c2} and the system enters a XY-antiferromagnetic phase. Using a bond operator representation we consider a model spin-1 Heisenberg antiferromagnetic with single-ion anisotropy in hyper-cubic lattices under strong magnetic fields. We show that the transition at Hc2H_{c2} can be interpreted as a Bose-Einstein condensation (BEC) of magnons. The theoretical results are used to analyze our magnetization versus field data in the organic compound NiCl2NiCl_2-4SC(NH2)24SC(NH_2)_2 (DTN) at very low temperatures. This is the ideal BEC system to study this transition since Hc2H_{c2} is sufficiently low to be reached with static magnetic fields (as opposed to pulsed fields). The scaling of the magnetization as a function of field and temperature close to Hc2H_{c2} shows excellent agreement with the theoretical predictions. It allows to obtain the quantum critical exponents and confirm the BEC nature of the transition at Hc2H_{c2}.Comment: 4 pages, 1 figure. Accepted for publication in PRB

    Controlled switching of intrinsic localized modes in a 1-D antiferromagnet

    Full text link
    Nearly steady-state locked intrinsic localized modes (ILMs) in the quasi-1d antiferromagnet (C2H5NH3)2CuCl4 are detected via four-wave mixing emission or the uniform mode absorption. Exploiting the long-time stability of these locked ILMs, repeatable nonlinear switching is observed by varying the sample temperature, and localized modes with various amplitudes are created by modulation of the microwave driver power. This steady-state ILM locking technique could be used to produce energy localization in other atomic lattices.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett. v.2 : clarifications of text and figures in response to comment

    Exact results for the reactivity of a single-file system

    Get PDF
    We derive analytical expressions for the reactivity of a Single-File System with fast diffusion and adsorption and desorption at one end. If the conversion reaction is fast, then the reactivity depends only very weakly on the system size, and the conversion is about 100%. If the reaction is slow, then the reactivity becomes proportional to the system size, the loading, and the reaction rate constant. If the system size increases the reactivity goes to the geometric mean of the reaction rate constant and the rate of adsorption and desorption. For large systems the number of nonconverted particles decreases exponentially with distance from the adsorption/desorption end.Comment: 4 pages, 2 figure

    A validation of the p-SLLOD equations of motion for homogeneous steady-state flows

    Get PDF
    A validation of the p -SLLOD equations of motion for nonequilibrium molecular dynamics simulation under homogeneous steady-state flow is presented. We demonstrate that these equations generate the correct center-of-mass trajectory of the system, are completely compatible with (and derivable from) Hamiltonian dynamics, satisfy an appropriate energy balance, and require no fictitious external force to generate the required homogeneous flow. It is also shown that no rigorous derivation of the SLLOD equations exists to date.open131
    corecore