582 research outputs found

    Space shuttle main engine high pressure fuel pump aft platform seal cavity flow analysis

    Get PDF
    A general purpose, three-dimensional computational fluid dynamics code named PHOENICS, developed by CHAM Inc., is used to model the flow in the aft-platform seal cavity in the high pressure fuel pump of the space shuttle main engine. The model is used to predict the temperatures, velocities, and pressures in the cavity for six different sets of boundary conditions. The results are presented as input for further analysis of two known problems in the region, specifically: erratic pressures and temperatures in the adjacent coolant liner cavity and cracks in the blade shanks near the outer diameter of the aft-platform seal

    Analysis of physical-chemical processes governing SSME internal fluid flows

    Get PDF
    The efforts to adapt CHAM's computational fluid dynamics code, PHOENICS, to the analysis of flow within the high pressure fuel turbopump (HPFTP) aft-platform seal cavity of the SSME are summarized. In particular, the special purpose PHOENICS satellite and ground station specifically formulated for this application are listed and described, and the preliminary results of the first part two-dimensional analyses are presented and discussed. Planned three-dimensional analyses are also briefly outlined. To further understand the mixing and combustion processes in the SSME fuelside preburners, a single oxygen-hydrogen jet element was investigated

    Carbon storage, timber production, and biodiversity: Comparing ecosystem services with multi-criteria decision analysis

    Get PDF
    Increasingly, land managers seek ways to manage forests for multiple ecosystem services and functions, yet considerable challenges exist in comparing disparate services and balancing trade-offs among them. We applied multi-criteria decision analysis (MCDA) and forest simulation models to simultaneously consider three objectives: (1) storing carbon, (2) producing timber and wood products, and (3) sustaining biodiversity. We used the Forest Vegetation Simulator (FVS) applied to 42 northern hardwood sites to simulate forest development over 100 years and to estimate carbon storage and timber production. We estimated biodiversity implications with occupancy models for 51 terrestrial bird species that were linked to FVS outputs. We simulated four alternative management prescriptions that spanned a range of harvesting intensities and forest structure retention. We found that silvicultural approaches emphasizing less frequent harvesting and greater structural retention could be expected to achieve the greatest net carbon storage but also produce less timber. More intensive prescriptions would enhance biodiversity because positive responses of early successional species exceeded negative responses of late successional species within the heavily forested study area. The combinations of weights assigned to objectives had a large influence on which prescriptions were scored as optimal. Overall, we found that a diversity of silvicultural approaches is likely to be preferable to any single approach, emphasizing the need for landscape-scale management to provide a full range of ecosystem goods and services. Our analytical framework that combined MCDA with forest simulation modeling was a powerful tool in understanding trade-offs among management objectives and how they can be simultaneously accommodated. © 2012 by the Ecological Society of America

    Formalism for testing theories of gravity using lensing by compact objects. III: Braneworld gravity

    Full text link
    Braneworld gravity is a model that endows physical space with an extra dimension. In the type II Randall-Sundrum braneworld gravity model, the extra dimension modifies the spacetime geometry around black holes, and changes predictions for the formation and survival of primordial black holes. We develop a comprehensive analytical formalism for far-field black hole lensing in this model, using invariant quantities to compute all geometric optics lensing observables. We then make the first analysis of wave optics in braneworld lensing, working in the semi-classical limit. We show that wave optics offers the only realistic way to observe braneworld effects in black hole lensing. We point out that if primordial braneworld black holes exist, have mass M, and contribute a fraction f of the dark matter, then roughly 3e5 x f (M/1e-18 Msun)^(-1) of them lie within our Solar System. These objects, which we call "attolenses," would produce interference fringes in the energy spectra of gamma-ray bursts at energies ~100 (M/1e-18 Msun)^(-1) MeV (which will soon be accessible with the GLAST satellite). Primordial braneworld black holes spread throughout the universe could produce similar interference effects; the probability for "attolensing" may be non-negligible. If interference fringes were observed, the fringe spacing would yield a simple upper limit on M. Detection of a primordial black hole with M <~ 1e-19 Msun would challenge general relativity and favor the braneworld model. Further work on lensing tests of braneworld gravity must proceed into the physical optics regime, which awaits a description of the full spacetime geometry around braneworld black holes.Comment: 13 pages, 3 figures; accepted in PRD; expanded discussion of prospects for observing attolensing with GLAS

    Gravitational Lenses With More Than Four Images: I. Classification of Caustics

    Full text link
    We study the problem of gravitational lensing by an isothermal elliptical density galaxy in the presence of a tidal perturbation. When the perturbation is fairly strong and oriented near the galaxy's minor axis, the lens can produce image configurations with six or even eight highly magnified images lying approximately on a circle. We classify the caustic structures in the model and identify the range of models that can produce such lenses. Sextuple and octuple lenses are likely to be rare because they require special lens configurations, but a full calculation of the likelihood will have to include both the existence of lenses with multiple lens galaxies and the strong magnification bias that affects sextuple and octuple lenses. At optical wavelengths these lenses would probably appear as partial or complete Einstein rings, but at radio wavelengths the individual images could probably be resolved.Comment: 30 pages, including 12 postscript figures; accepted for publication in Ap

    What Fraction of Gravitational Lens Galaxies Lie in Groups?

    Full text link
    We predict how the observed variations in galaxy populations with environment affect the number and properties of gravitational lenses in different environments. Two trends dominate: lensing strongly favors early-type galaxies, which tend to lie in dense environments, but dense environments tend to have a larger ratio of dwarf to giant galaxies than the field. The two effects nearly cancel, and the distribution of environments for lens and non-lens galaxies are not substantially different (lens galaxies are slightly less likely than non-lens galaxies to lie in groups and clusters). We predict that about 20% of lens galaxies are in bound groups (defined as systems with a line-of-sight velocity dispersion sigma in the range 200 < sigma < 500 km/s), and another roughly 3% are in rich clusters (sigma > 500 km/s). Therefore at least roughly 25% of lenses are likely to have environments that significantly perturb the lensing potential. If such perturbations do not significantly increase the image separation, we predict that lenses in groups have a mean image separation that is about 0.2'' smaller than that for lenses in the field and estimate that 20-40 lenses in groups are required to test this prediction with significance. The tail of the distribution of image separations is already illuminating. Although lensing by galactic potential wells should rarely produce lenses with image separations theta >~ 6'', two such lenses are seen among 49 known lenses, suggesting that environmental perturbations of the lensing potential can be significant. Further comparison of theory and data will offer a direct probe of the dark halos of galaxies and groups and reveal the extent to which they affect lensing estimates of cosmological parameters.Comment: 32 pages, 6 embedded figures; accepted for publication in Ap
    • …
    corecore