659 research outputs found

    Lensing and the Centers of Distant Early-Type Galaxies

    Full text link
    Gravitational lensing provides a unique probe of the inner 10-1000 pc of distant galaxies (z=0.2-1). Lens theory predicts that every strong lens system should have a faint image near the center of the lens galaxy, which should be visible in radio lenses but have not been observed. We study these ``core'' images using models derived from the stellar distributions in nearby early-type galaxies. We find that realistic galaxies predict a remarkably wide range of core images, with lensing magnifications spanning some six orders of magnitude. More concentrated galaxies produce fainter core images, although not with any simple, quantitative, model independent relation. Some real galaxies have diffuse cores and predict bright core images (magnification mu>~0.1), but more common are galaxies that predict faint core images (mu<~0.001). Thus, stellar mass distributions alone are probably concentrated enough to explain the lack of observed core images, and may require observational sensitivity to improve by an order of magnitude before detections of core images become common. Two-image lenses will tend to have brighter core images than four-image lenses, so they will be the better targets for finding core images and exploiting these tools for studying the central mass distributions of distant galaxies.Comment: 13 pages, emulateapj; submitted to Ap

    Analysis of physical-chemical processes governing SSME internal fluid flows

    Get PDF
    The efforts to adapt CHAM's computational fluid dynamics code, PHOENICS, to the analysis of flow within the high pressure fuel turbopump (HPFTP) aft-platform seal cavity of the SSME are summarized. In particular, the special purpose PHOENICS satellite and ground station specifically formulated for this application are listed and described, and the preliminary results of the first part two-dimensional analyses are presented and discussed. Planned three-dimensional analyses are also briefly outlined. To further understand the mixing and combustion processes in the SSME fuelside preburners, a single oxygen-hydrogen jet element was investigated

    Formalism for testing theories of gravity using lensing by compact objects. III: Braneworld gravity

    Full text link
    Braneworld gravity is a model that endows physical space with an extra dimension. In the type II Randall-Sundrum braneworld gravity model, the extra dimension modifies the spacetime geometry around black holes, and changes predictions for the formation and survival of primordial black holes. We develop a comprehensive analytical formalism for far-field black hole lensing in this model, using invariant quantities to compute all geometric optics lensing observables. We then make the first analysis of wave optics in braneworld lensing, working in the semi-classical limit. We show that wave optics offers the only realistic way to observe braneworld effects in black hole lensing. We point out that if primordial braneworld black holes exist, have mass M, and contribute a fraction f of the dark matter, then roughly 3e5 x f (M/1e-18 Msun)^(-1) of them lie within our Solar System. These objects, which we call "attolenses," would produce interference fringes in the energy spectra of gamma-ray bursts at energies ~100 (M/1e-18 Msun)^(-1) MeV (which will soon be accessible with the GLAST satellite). Primordial braneworld black holes spread throughout the universe could produce similar interference effects; the probability for "attolensing" may be non-negligible. If interference fringes were observed, the fringe spacing would yield a simple upper limit on M. Detection of a primordial black hole with M <~ 1e-19 Msun would challenge general relativity and favor the braneworld model. Further work on lensing tests of braneworld gravity must proceed into the physical optics regime, which awaits a description of the full spacetime geometry around braneworld black holes.Comment: 13 pages, 3 figures; accepted in PRD; expanded discussion of prospects for observing attolensing with GLAS

    The Atacama Cosmology Telescope: CO(J = 3 - 2) mapping and lens modeling of an ACT-selected dusty star-forming galaxy

    Get PDF
    We report Northern Extended Millimeter Array (NOEMA) CO(J=32J = 3 - 2) observations of the dusty star-forming galaxy ACT-S\,J020941+001557 at z=2.5528z = 2.5528, which was detected as an unresolved source in the Atacama Cosmology Telescope (ACT) equatorial survey. Our spatially resolved spectral line data support the derivation of a gravitational lens model from 37 independent velocity channel maps using a pixel-based algorithm, from which we infer a velocity-dependent magnification factor μ722\mu \approx 7-22 with a luminosity-weighted mean \left\approx 13. The resulting source-plane reconstruction is consistent with a rotating disk, although other scenarios cannot be ruled out by our data. After correction for lensing, we derive a line luminosity LCO(32)=(5.53±0.69)×1010Kkms1pc2L^{\prime}_{\rm CO(3-2)}= (5.53\pm 0.69) \times 10^{10}\,{\rm \,K\,km\,s^{-1}\,pc^{2}}, a cold gas mass Mgas=(3.86±0.33)×1010MM_{{\rm gas}}= (3.86 \pm 0.33) \times 10^{10}\,M_{\odot}, a dynamical mass Mdynsin2i=3.91.5+1.8×1010MM_{\rm dyn}\,{\rm sin}^2\,i = 3.9^{+1.8}_{-1.5} \times 10^{10}\,M_{\odot}, and a gas mass fraction fgascsc2i=1.00.4+0.8f_{\rm gas}\,{\rm csc}^2\,i = 1.0^{+0.8}_{-0.4}. The line brightness temperature ratio of r3,11.6r_{3,1}\approx 1.6 relative to a Green Bank Telescope CO(J=10J=1-0) detection may be elevated by a combination of external heating of molecular clouds, differential lensing, and/or pointing errors.Comment: 8 pages, 5 figures, accepted to Ap

    High resolution observations and mass modelling of the CLASS gravitational lens B1152+199

    Get PDF
    We present a series of high resolution radio and optical observations of the CLASS gravitational lens system B1152+199 obtained with the Multi-Element Radio-Linked Interferometer Network (MERLIN), Very Long Baseline Array (VLBA) and Hubble Space Telescope (HST). Based on the milliarcsecond-scale substructure of the lensed radio components and precise optical astrometry for the lensing galaxy, we construct models for the system and place constraints on the galaxy mass profile. For a single galaxy model with surface mass density Sigma(r) propto r^-beta, we find that 0.95 < beta < 1.21 at 2-sigma confidence. Including a second deflector to represent a possible satellite galaxy of the primary lens leads to slightly steeper mass profiles.Comment: 7 pages, post-referee revision for MNRA

    Substructures in lens galaxies: PG1115+080 and B1555+375, two fold configurations

    Full text link
    We study the anomalous flux ratio which is observed in some four-image lens systems, where the source lies close to a fold caustic. In this case two of the images are close to the critical curve and their flux ratio should be equal to unity, instead in several cases the observed value differs significantly. The most plausible solution is to invoke the presence of substructures, as for instance predicted by the Cold Dark Matter scenario, located near the two images. In particular, we analyze the two fold lens systems PG1115+080 and B1555+375, for which there are not yet satisfactory models which explain the observed anomalous flux ratios. We add to a smooth lens model, which reproduces well the positions of the images but not the anomalous fluxes, one or two substructures described as singular isothermal spheres. For PG1115+080 we consider a smooth model with the influence of the group of galaxies described by a SIS and a substructure with mass 105M\sim 10^{5} M_{\odot} as well as a smooth model with an external shear and one substructure with mass 108M\sim 10^{8} M_{\odot} . For B1555+375 either a strong external shear or two substructures with mass 107M\sim 10^{7} M_{\odot} reproduce the data quite well.Comment: 26 pages, updated bibliography, Accepted for publication in Astrophysics & Space Scienc

    Discovery of a Fifth Image of the Large Separation Gravitationally Lensed Quasar SDSS J1004+4112

    Full text link
    We report the discovery of a fifth image in the large separation lensed quasar system SDSS J1004+4112. A faint point source located 0.2'' from the center of the brightest galaxy in the lensing cluster is detected in images taken with the Advanced Camera for Surveys (ACS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope. The flux ratio between the point source and the brightest lensed component in the ACS image is similar to that in the NICMOS image. The location and brightness of the point source are consistent with lens model predictions for a lensed image. We therefore conclude that the point source is likely to be a fifth image of the source quasar. In addition, the NICMOS image reveals the lensed host galaxy of the source quasar, which can strongly constrain the structure of the lensing critical curves and thereby the mass distribution of the lensing cluster.Comment: 5 pages, 5 figures, accepted for publication in PAS
    corecore