24 research outputs found

    Estimating the spatial position of marine mammals based on digital camera recordings

    Get PDF
    Estimating the spatial position of organisms is essential to quantify interactions between the organism and the characteristics of its surroundings, for example, predator–prey interactions, habitat selection, and social associations. Because marine mammals spend most of their time under water and may appear at the surface only briefly, determining their exact geographic location can be challenging. Here, we developed a photogrammetric method to accurately estimate the spatial position of marine mammals or birds at the sea surface. Digital recordings containing landscape features with known geographic coordinates can be used to estimate the distance and bearing of each sighting relative to the observation point. The method can correct for frame rotation, estimates pixel size based on the reference points, and can be applied to scenarios with and without a visible horizon. A set of R functions was written to process the images and obtain accurate geographic coordinates for each sighting. The method is applied to estimate the spatiotemporal fine-scale distribution of harbour porpoises in a tidal inlet. Video recordings of harbour porpoises were made from land, using a standard digital single-lens reflex (DSLR) camera, positioned at a height of 9.59 m above mean sea level. Porpoises were detected up to a distance of ~3136 m (mean 596 m), with a mean location error of 12 m. The method presented here allows for multiple detections of different individuals within a single video frame and for tracking movements of individuals based on repeated sightings. In comparison with traditional methods, this method only requires a digital camera to provide accurate location estimates. It especially has great potential in regions with ample data on local (a)biotic conditions, to help resolve functional mechanisms underlying habitat selection and other behaviors in marine mammals in coastal areas

    Long-distance migrants vary migratory behaviour as much as short-distance migrants : an individual-level comparison from a seabird species with diverse migration strategies

    Get PDF
    As environmental conditions fluctuate across years, seasonal migrants must determine where and when to move without comprehensive knowledge of conditions beyond their current location. Animals can address this challenge by following cues in their local environment to vary behaviour in response to current conditions, or by moving based on learned or inherited experience of past conditions resulting in fixed behaviour across years. It is often claimed that long-distance migrants are more fixed in their migratory behaviour because as distance between breeding and wintering areas increases, reliability of cues to predict distant and future conditions decreases. While supported by some population-level studies, the influence of migration distance on behavioural variation is seldom examined on an individual level. Lesser black-backed gulls Larus fuscus are generalist seabirds that use a diversity of migration strategies. Using high-resolution multi-year GPS tracking data from 82 individuals from eight colonies in Western Europe, we quantified inter- and intra-individual variation in non-breeding distributions, winter site fidelity, migration routes and timing of migration, with the objectives of determining how much variation lesser black-backed gulls have in their migratory behaviour and examining whether variation changes with migration distance. We found that intra-individual variation was significantly lower than variation between individuals for non-breeding distributions, winter site fidelity, migration routes and timing of migration, resulting in consistent individual strategies for all behaviours examined. Yet, intra-individual variation ranged widely among individuals (e.g. winter site overlap: 0-0.91 out of 1; migration timing: 0-192 days), and importantly, individual differences in variation were not related to migration distance. The apparent preference for maintaining a consistent strategy, present in even the shortest distance migrants, suggests that familiarity may be more advantageous than exactly tracking current environmental conditions. Yet, variation in behaviour across years was observed in many individuals and could be substantial. This suggests that individuals, irrespective of migration distance, have the capacity to adjust to current conditions within the broad confines of their individual strategies, and occasionally, even change their strategy

    The stranding anomaly as population indicator: the case of Harbour Porpoise <i>Phocoena phocoena</i> in North-Western Europe

    Get PDF
    Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform in space and constant in time. We used a drift model to map stranding probabilities and predict stranding patterns of cetacean carcasses under H-0 across the North Sea, the Channel and the Bay of Biscay, for the period 1990-2009. As the most common cetacean occurring in this area, we chose the harbour porpoise <i>Phocoena phocoena</i> for our modelling. The difference between these strandings expected under H-0 and observed strandings is defined as the stranding anomaly. It constituted the stranding data series corrected for drift conditions. Seasonal decomposition of stranding anomaly suggested that drift conditions did not explain observed seasonal variations of porpoise strandings. Long-term stranding anomalies increased first in the southern North Sea, the Channel and Bay of Biscay coasts, and finally the eastern North Sea. The hypothesis of changes in porpoise distribution was consistent with local visual surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna

    From Sensor Data to Animal Behaviour: An Oystercatcher Example

    Get PDF
    Animal-borne sensors enable researchers to remotely track animals, their physiological state and body movements. Accelerometers, for example, have been used in several studies to measure body movement, posture, and energy expenditure, although predominantly in marine animals. In many studies, behaviour is often inferred from expert interpretation of sensor data and not validated with direct observations of the animal. The aim of this study was to derive models that could be used to classify oystercatcher (Haematopus ostralegus) behaviour based on sensor data. We measured the location, speed, and tri-axial acceleration of three oystercatchers using a flexible GPS tracking system and conducted simultaneous visual observations of the behaviour of these birds in their natural environment. We then used these data to develop three supervised classification trees of behaviour and finally applied one of the models to calculate time-activity budgets. The model based on accelerometer data developed to classify three behaviours (fly, terrestrial locomotion, and no movement) was much more accurate (cross-validation error = 0.14) than the model based on GPS-speed alone (cross-validation error = 0.35). The most parsimonious acceleration model designed to classify eight behaviours could distinguish five: fly, forage, body care, stand, and sit (cross-validation error = 0.28); other behaviours that were observed, such as aggression or handling of prey, could not be distinguished. Model limitations and potential improvements are discussed. The workflow design presented in this study can facilitate model development, be adapted to a wide range of species, and together with the appropriate measurements, can foster the study of behaviour and habitat use of free living animals throughout their annual routine

    Where two oceans meet: distribution and offshore interactions of great-winged petrels Pterodroma macroptera and Leach&apos;s storm petrels Oceanodroma leucorhoa off southern Africa

    No full text
    Abstract During seabird surveys off southern Africa, great-winged petrel Pterodroma macroptera and Leach&apos;s storm petrel Oceanodroma leucorhoa were widespread and relatively common. Similar aerial displays, frequent (social) interactions, a tendency to &apos;&apos;huddle&apos;&apos; in tight (mixed) gatherings and interactions during foraging inspired a study of their behaviour and distribution. Both species peaked at &gt;2,000-m-deep ocean waters, with lower densities over the shelf and with Leach&apos;s storm petrels (ca. 0.5 km -2 ) twice as abundant as great-winged petrels (ca. 0.25 km -2 ). The results suggest half a million great-winged petrels and well over a million Leach&apos;s storm petrels occurring over deep waters off southern Africa. Active fishing vessels elevated background densities of petrels in some areas, indicating the utilisation of discarded material, but in most areas hardly any fisheries were encountered and on the shelf with no discernable effect on petrel densities. Both species showed an association with meso-scale hydrographic features in the Agulhas current retroflection region. High densities of Leach&apos;s storm petrels occurred in offshore areas with steep salinity and sea surface temperature gradients. No such tendency was found in greatwinged petrels. Great-winged petrels spent relatively little time feeding during daylight (10.3% of birds observed) in comparison to Leach&apos;s storm petrels (66.2%), but were frequently seen to join feeding Leach&apos;s storm petrels where they profited from the searching skills of Leach&apos;s. Both species performed displays as individuals, in pairs, in larger groups and in mixed-species groups. Tight gatherings of petrels swimming at sea (huddling) occurred, consisting either of one species or both. When disturbed, such flocks would disperse after take off and often engage in aerial displays. It is speculated that the formation of these flocks is part of the anti-predator strategy of petrels against attacks from under water

    Going with the flow : Tidal influence on the occurrence of the harbour porpoise (Phocoena phocoena) in the Marsdiep area, The Netherlands

    No full text
    One of the most important factors explaining the distribution and behaviour of coastal marine mammals are tides. Tidal forces drive a large number of primary and secondary processes, such as changes in water depth, salinity, temperature, current velocity and direction. Unravelling which tidal process is the most influential for a certain species is often challenging, due to a lack of observations of all tide related covariates, strong correlation between them, and the elusive nature of most marine organisms which often hampers their detection.In the Marsdiep area, a tidal inlet between the North Sea and the Dutch Wadden Sea, the presence of harbour porpoises (. Phocoena phocoena) was studied as a function of tide related covariates. Observations were carried out in early spring from a ferry crossing the inlet on a half hourly basis. Environmental and sightings data were collected by one observer, while an on-board Acoustic Doppler Current Profiler (ADCP) and temperature sensor continuously recorded current velocity profiles and temperature, respectively. Sea surface temperature and salinity were measured at a nearby jetty. Sightings (. n=. 134) were linked to tidal elevation, geographical position, local depth-averaged current velocity, water temperature (with and without trend correction) and salinity.Variation in sighting rate was best described by salinity, with highest sighting rate at high levels of salinity (>30gkg-1), indicating that porpoises enter the area in bodies of (more saline) North Sea water. Second best variable was time of day, with the highest sighting rate early morning, and decreasing during the day. However, surveys in the morning happened to coincide more often with high water and hence, the apparent time of day effect could be due to collinearity. Most porpoises were present in the northern part of the Marsdiep, particularly during high tide.Tide dependent sighting rates confirmed that porpoises reside in the North Sea, and enter the western Wadden Sea during the flood and leave during ebb. This tidal influx is most likely related to prey availability, which corresponds to other recent studies in this area showing higher fish abundance during high tide. Documenting information on tide related patterns could be used in practice, when e.g. planning anthropogenic activities or assessing critical habitats for this species

    Predicting Harbor Porpoise Strandings Based on Near-Shore Sightings Indicates Elevated Temporal Mortality Rates

    Get PDF
    The increase in anthropogenic activities and their potential impact on wildlife requires the establishment of monitoring programs and identification of indicator species. Within marine habitats, marine mammals are often used as ecosystem sentinels, which has led to investigations into their abundance, distribution, and mortality patterns. However, trends in sightings and strandings are rarely analyzed in combination. This is necessary to distinguish elevated stranding rates caused by changes in local abundance from increased mortality as a consequence of other natural, environmental or anthropogenic factors. Therefore, the objective of this study was to assess whether harbor porpoise (Phocoena phocoena) stranding frequency in the southern North Sea can be explained by local population density derived from more than 400 thousand hours of systematic observations along the Dutch coast between 1990 and 2018. Since the late 1990s, both the number of stranded porpoises and the sighting rate increased rapidly up to around the mid-2000s, after which they remained high, but with large inter-annual fluctuations. On an annual basis there was a strong correlation between porpoise strandings and sightings, but with a seasonal mismatch. Highest stranding rates occur in late summer, while highest sighting rates occur in early spring. Despite low sighting rates in late summer, August appears to be the best predictor for the monthly variation in the number of stranded porpoises, which could be explained by post-reproductive dispersal and mortality. Excessive high porpoise stranding numbers after accounting for variations in local density could signpost unusual mortality events (UMEs). The corrected stranding rates show that in the early 1990s, when porpoise sightings were rare, and after 2010, the number of stranded porpoises exceeds the expected number. Especially in the summer of 2011, the number of dead porpoises found ashore was excessively high and this might reflect an UME. These results demonstrate that a comparative interpretation of marine mammal strandings and coastal sightings can be a valuable management and conservation tool that could provide an early warning signal for population change

    Energetic and behavioral consequences of migration: an empirical evaluation in the context of the full annual cycle

    No full text
    Seasonal migrations are used by diverse animal taxa, yet the costs and benefits of migrating have rarely been empirically examined. The aim of this study was to determine how migration influences two ecological currencies, energy expenditure and time allocated towards different behaviors, in a full annual cycle context. We compare these currencies among lesser black-backed gulls that range from short- ( 4500 km) migrants. Daily time-activity budgets were reconstructed from tri-axial acceleration and GPS, which, in conjunction with a bioenergetics model to estimate thermoregulatory costs, enabled us to estimate daily energy expenditure throughout the year. We found that migration strategy had no effect on annual energy expenditure, however, energy expenditure through time deviated more from the annual average as migration distance increased. Patterns in time-activity budgets were similar across strategies, suggesting migration strategy does not limit behavioral adjustments required for other annual cycle stages (breeding, molt, wintering). Variation among individuals using the same strategy was high, suggesting that daily behavioral decisions (e.g. foraging strategy) contribute more towards energy expenditure than an individual’s migration strategy. These findings provide unprecedented new understanding regarding the relative importance of fine versus broad-scale behavioral strategies towards annual energy expenditures
    corecore