2,047 research outputs found
Oscillatory processes in the theory of particulate formation in supersaturated chemical solutions
We study a nonlinear problem which occurs in the theory of particulate formation in supersaturated chemical solutions. Mathematically, the problem involves the bifurcation of time-periodic solutions in an initial-boundary value problem involving a nonlinear integro-differential equation. The mechanism controlling the oscillatory states is revealed by combining the theory of characteristics for first order partial differential equations with the multi-time scale perturbation analysis of a certain third order system of nonlinear ordinary differential equations
Flight evaluation of the x-15 ball-nose flow-direction sensor as an air-data system
Modification of ball-nose flow direction sensor for Mach number and air pressure altitude measurement
Avalanche of Bifurcations and Hysteresis in a Model of Cellular Differentiation
Cellular differentiation in a developping organism is studied via a discrete
bistable reaction-diffusion model. A system of undifferentiated cells is
allowed to receive an inductive signal emenating from its environment.
Depending on the form of the nonlinear reaction kinetics, this signal can
trigger a series of bifurcations in the system. Differentiation starts at the
surface where the signal is received, and cells change type up to a given
distance, or under other conditions, the differentiation process propagates
through the whole domain. When the signal diminishes hysteresis is observed
SciRecSys: A Recommendation System for Scientific Publication by Discovering Keyword Relationships
In this work, we propose a new approach for discovering various relationships
among keywords over the scientific publications based on a Markov Chain model.
It is an important problem since keywords are the basic elements for
representing abstract objects such as documents, user profiles, topics and many
things else. Our model is very effective since it combines four important
factors in scientific publications: content, publicity, impact and randomness.
Particularly, a recommendation system (called SciRecSys) has been presented to
support users to efficiently find out relevant articles
Instability and spatiotemporal rheochaos in a shear-thickening fluid model
We model a shear-thickening fluid that combines a tendency to form
inhomogeneous, shear-banded flows with a slow relaxational dynamics for fluid
microstructure. The interplay between these factors gives rich dynamics, with
periodic regimes (oscillating bands, travelling bands, and more complex
oscillations) and spatiotemporal rheochaos. These phenomena, arising from
constitutive nonlinearity not inertia, can occur even when the steady-state
flow curve is monotonic. Our model also shows rheochaos in a low-dimensional
truncation where sharply defined shear bands cannot form
Noise-induced inhibitory suppression of malfunction neural oscillators
Motivated by the aim to find new medical strategies to suppress undesirable
neural synchronization we study the control of oscillations in a system of
inhibitory coupled noisy oscillators. Using dynamical properties of inhibition,
we find regimes when the malfunction oscillations can be suppressed but the
information signal of a certain frequency can be transmitted through the
system. The mechanism of this phenomenon is a resonant interplay of noise and
the transmission signal provided by certain value of inhibitory coupling.
Analyzing a system of three or four oscillators representing neural clusters,
we show that this suppression can be effectively controlled by coupling and
noise amplitudes.Comment: 10 pages, 14 figure
A minimal model for chaotic shear banding in shear-thickening fluids
We present a minimal model for spatiotemporal oscillation and rheochaos in
shear-thickening complex fluids at zero Reynolds number. In the model, a
tendency towards inhomogeneous flows in the form of shear bands combines with a
slow structural dynamics, modelled by delayed stress relaxation. Using
Fourier-space numerics, we study the nonequilibrium `phase diagram' of the
fluid as a function of a steady mean (spatially averaged) stress, and of the
relaxation time for structural relaxation. We find several distinct regions of
periodic behavior (oscillating bands, travelling bands, and more complex
oscillations) and also regions of spatiotemporal rheochaos. A low-dimensional
truncation of the model retains the important physical features of the full
model (including rheochaos) despite the suppression of sharply defined
interfaces between shear bands. Our model maps onto the FitzHugh-Nagumo model
for neural network dynamics, with an unusual form of long-range coupling.Comment: Revised version (in particular, new section III.E. and Appendix A
Use of soil moisture information in yield models
There are no author-identified significant results in this report
- …
