84 research outputs found

    Combinatorial chemistry

    Get PDF

    Advancing the functional utility of PAR-CLIP by quantifying background binding to mRNAs and lncRNAs

    Full text link

    RNA-binding proteins to assess gene expression states of co-cultivated cells in response to tumor cells

    Get PDF
    BACKGROUND: Tumors and complex tissues consist of mixtures of communicating cells that differ significantly in their gene expression status. In order to understand how different cell types influence one another's gene expression, it will be necessary to monitor the mRNA profiles of each cell type independently and to dissect the mechanisms that regulate their gene expression outcomes. RESULTS: In order to approach these questions, we have used RNA-binding proteins such as ELAV/Hu, poly (A) binding protein (PABP) and cap-binding protein (eIF-4E) as reporters of gene expression. Here we demonstrate that the epitope-tagged RNA binding protein, PABP, expressed separately in tumor cells and endothelial cells can be used to discriminate their respective mRNA targets from mixtures of these cells without significant mRNA reassortment or exchange. Moreover, using this approach we identify a set of endothelial genes that respond to the presence of co-cultured breast tumor cells. CONCLUSION: RNA-binding proteins can be used as reporters to elucidate components of operational mRNA networks and operons involved in regulating cell-type specific gene expression in tissues and tumors

    The global dynamics of RNA stability orchestrates responses to cellular activation

    Get PDF
    Transcriptomics is used to quantify changes in accumulated levels of mRNAs following cellular activation. These changes arise from the opposing fluxes of transcription and mRNA decay, both of which affect the functional dynamics of global gene expression. A study published recently in BMC Genomics focuses on the contribution made by mRNA stability in shaping the kinetics of gene responses in mammalian cells

    PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data

    Get PDF
    Crosslinking and immunoprecipitation (CLIP) protocols have made it possible to identify transcriptome-wide RNA-protein interaction sites. In particular, PAR-CLIP utilizes a photoactivatable nucleoside for more efficient crosslinking. We present an approach, centered on the novel PARalyzer tool, for mapping high-confidence sites from PAR-CLIP deep-sequencing data. We show that PARalyzer delineates sites with a high signal-to-noise ratio. Motif finding identifies the sequence preferences of RNA-binding proteins, as well as seed-matches for highly expressed microRNAs when profiling Argonaute proteins. Our study describes tailored analytical methods and provides guidelines for future efforts to utilize high-throughput sequencing in RNA biology. PARalyzer is available at http://www.genome.duke.edu/labs/ohler/research/PARalyzer/

    A Two-Phase Innate Host Response to Alphavirus Infection Identified by mRNP-Tagging In Vivo

    Get PDF
    A concept fundamental to viral pathogenesis is that infection induces specific changes within the host cell, within specific tissues, or within the entire animal. These changes are reflected in a cascade of altered transcription patterns evident during infection. However, elucidation of this cascade in vivo has been limited by a general inability to distinguish changes occurring in the minority of infected cells from those in surrounding uninfected cells. To circumvent this inherent limitation of traditional gene expression profiling methods, an innovative mRNP-tagging technique was implemented to isolate host mRNA specifically from infected cells in vitro as well as in vivo following Venezuelan equine encephalitis virus (VEE) infection. This technique facilitated a direct characterization of the host defense response specifically within the first cells infected with VEE, while simultaneous total RNA analysis assessed the collective response of both the infected and uninfected cells. The result was a unique, multifaceted profile of the early response to VEE infection in primary dendritic cells, as well as in the draining lymph node, the initially targeted tissue in the mouse model. A dynamic environment of complex interactions was revealed, and suggested a two-step innate response in which activation of a subset of host genes in infected cells subsequently leads to activation of the surrounding uninfected cells. Our findings suggest that the application of viral mRNP-tagging systems, as introduced here, will facilitate a much more detailed understanding of the highly coordinated host response to infectious agents

    SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells

    Get PDF
    Long noncoding RNAs (lncRNAs) are important regulators of gene expression, but their structural features are largely unknown. We used structure-selective chemical probing to examine the structure of the Xist lncRNA in living cells and found that the RNA adopts well-defined and complex structures throughout its entire 18-kb length. By looking for changes in reactivity induced by the cellular environment, we were able to identify numerous previously unknown hubs of protein interaction. We also found that the Xist structure governs specific protein interactions in multiple distinct ways. Our results provide a detailed structural context for Xist function and lay a foundation for understanding structure–function relationships in all lncRNAs

    Neuron-specific ELAV/Hu proteins suppress HuR mRNA during neuronal differentiation by alternative polyadenylation

    Get PDF
    The ubiquitously expressed RNA-binding protein HuR increases the stability and translation of mRNAs encoding growth regulatory proteins that promote proliferation in a variety of cell types. However, the three neuron-specific ELAV/Hu proteins, HuB, HuC and HuD, while binding to the same types of mRNAs, are required instead for neuronal differentiation, and it becomes difficult to reconcile these contrary functions when all four Hu proteins are expressed in the same neuron. HuR mRNA exists as three alternatively polyadenylated variants, a 1.5-kb testes-specific mRNA isoform, a ubiquitous 2.4-kb isoform and a 6.0-kb isoform that we now show is induced during neuronal differentiation and appears to be neuron-specific. This 6.0-kb neuron-specific mRNA isoform is inherently less stable and produces less HuR protein than the ubiquitous 2.4-kb mRNA. Furthermore, we show that neuronal HuB, HuC and HuD, as well as HuR itself, can bind at the 2.4-kb mRNA polyadenylation site, and when overexpressed can affect alternative polyadenylation to generate an extended HuR 3′-UTR that is translationally suppressed. We propose that the regulation of HuR protein expression by alternative polyadenylation allows neurons to post-transcriptionally regulate mRNAs-encoding factors required for proliferation versus differentiation to facilitate neuronal differentiation

    Tissue Type-Specific Expression of the dsRNA-Binding Protein 76 and Genome-Wide Elucidation of Its Target mRNAs

    Get PDF
    Background: RNA-binding proteins accompany all steps in the life of mRNAs and provide dynamic gene regulatory functions for rapid adjustment to changing extra-or intracellular conditions. The association of RNA-binding proteins with their targets is regulated through changing subcellular distribution, post-translational modification or association with other proteins. Methodology: We demonstrate that the dsRNA binding protein 76 (DRBP76), synonymous with nuclear factor 90, displays inherently distinct tissue type-specific subcellular distribution in the normal human central nervous system and in malignant brain tumors of glial origin. Altered subcellular localization and isoform distribution in malignant glioma indicate that tumor-specific changes in DRBP76-related gene products and their regulatory functions may contribute to the formation and/or maintenance of these tumors. To identify endogenous mRNA targets of DRBP76, we performed RNA-immunoprecipitation and genome-wide microarray analyses in HEK293 cells, and identified specific classes of transcripts encoding critical functions in cellular metabolism. Significance: Our data suggest that physiologic DRBP76 expression, isoform distribution and subcellular localization are profoundly altered upon malignant transformation. Thus, the functional role of DRBP76 in co- or post-transcriptional gene regulation may contribute to the neoplastic phenotype

    eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5'UTR

    Get PDF
    Background: Regulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood. Results: Here, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5′UTR of target mRNAs directly upstream of the AUG start codon. Conclusions: Our data support a model whereby purine motifs towards the 3′ end of the 5′UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding
    corecore