2,356 research outputs found

    Panoramic Views of the Cygnus Loop

    Get PDF
    We present a complete atlas of the Cygnus Loop supernova remnant in the light of [O III] (5007), H alpha, and [S II] (6717, 6731). Despite its shell-like appearance, the Cygnus Loop is not a current example of a Sedov-Taylor blast wave. Rather, the optical emission traces interactions of the supernova blast wave with clumps of gas. The surrounding interstellar medium forms the walls of a cavity through which the blast wave now propagates, including a nearly complete shell in which non-radiative filaments are detected. The Cygnus Loop blast wave is not breaking out of a dense cloud, but is instead running into confining walls. The interstellar medium dominates not only the appearance of the Cygnus Loop but also the continued evolution of the blast wave. If this is a typical example of a supernova remnant, then global models of the interstellar medium must account for such significant blast wave deceleration.Comment: 28 pages AAS Latex, 28 black+white figures, 6 color figures. To be published in The Astrophysical Journal Supplement Serie

    Radiation of Neutron Stars Produced by Superfluid Core

    Get PDF
    We find that neutron star interior is transparent for collisionless electron sound, the same way as it is transparent for neutrinos. In the presence of magnetic field the electron sound is coupled with electromagnetic radiation and form the fast magnetosonic wave. We find that electron sound is generated by superfluid vortices in the stellar core. Thermally excited helical vortex waves produce fast magnetosonic waves in the stellar crust which propagate toward the surface and transform into outgoing electromagnetic radiation. The vortex radiation has the spectral index -0.45 and can explain nonthermal radiation of middle-aged pulsars observed in the infrared, optical and hard X-ray bands. The radiation is produced in the stellar interior which allows direct determination of the core temperature. Comparing the theory with available spectra observations we find that the core temperature of the Vela pulsar is T=8*10^8K, while the core temperature of PSR B0656+14 and Geminga exceeds 2*10^8K. This is the first measurement of the temperature of a neutron star core. The temperature estimate rules out equation of states incorporating Bose condensations of pions or kaons and quark matter in these objects. Based on the temperature estimate and cooling models we determine the critical temperature of triplet neutron superfluidity in the Vela core Tc=(7.5\pm 1.5)*10^9K which agrees well with recent data on behavior of nucleon interactions at high energies. Another finding is that in the middle aged neutron stars the vortex radiation, rather then thermal conductivity, is the main mechanism of heat transfer from the stellar core to the surface. Electron sound opens a perspective of direct spectroscopic study of superdense matter in the neutron star interiors.Comment: 43 pages, 7 figures, to appear in Astrophysical Journa

    Non-Fermi liquid behavior below the NĂ©el temperature in the frustrated heavy fermion magnet UAu₂

    Get PDF
    The term Fermi liquid is almost synonymous with the metallic state. The association is known to break down at quantum critical points (QCPs), but these require precise values of tuning parameters, such as pressure and applied magnetic field, to exactly suppress a continuous phase transition temperature to the absolute zero. Three-dimensional non-Fermi liquid states, apart from superconductivity, that are unshackled from a QCP are much rarer and are not currently well understood. Here, we report that the triangular lattice system uranium diauride (UAu2) forms such a state with a non-Fermi liquid low-temperature heat capacity [Formula: see text] and electrical resistivity [Formula: see text] far below its NĂ©el temperature. The magnetic order itself has a novel structure and is accompanied by weak charge modulation that is not simply due to magnetostriction. The charge modulation continues to grow in amplitude with decreasing temperature, suggesting that charge degrees of freedom play an important role in the non-Fermi liquid behavior. In contrast with QCPs, the heat capacity and resistivity we find are unusually resilient in magnetic field. Our results suggest that a combination of magnetic frustration and Kondo physics may result in the emergence of this novel state

    COVID-19 Testing in a Weekly Cohort Study of Gay and Bisexual Men: The Impact of Health-Seeking Behaviors and Social Connection

    Get PDF
    Gay, bisexual, and other men who have sex with men (GBM) have developed community norms for regular HIV/STI testing. We investigated factors associated with self-reported COVID-19 testing in response to reported COVID-19 cases and public health restrictions. Participants responded to weekly cohort surveys between 10th May 2021 and 27th September 2021. We used the Andersen-Gill extensions to the Cox proportional hazards model for multivariable survival data to predict factors influencing COVID-19 testing. Mean age of the 942 study participants was 45.6 years (SD: 13.9). In multivariable analysis, GBM were more likely to report testing during periods of high COVID-19 caseload in their state of residence; if they were younger; university educated; close contact of someone with COVID-19; or reported coping with COVID-19 poorly. COVID-19 testing was higher among men who: were more socially engaged with other GBM; had a higher proportion of friends willing to vaccinate against COVID-19; and were willing to contact sexual partners for contact tracing. Social connection with other gay men was associated with COVID-19 testing, similar to what has been observed throughout the HIV epidemic, making community networks a potential focus for the promotion of COVID-19 safe practices

    Geometric Aspects of the Moduli Space of Riemann Surfaces

    Full text link
    This is a survey of our recent results on the geometry of moduli spaces and Teichmuller spaces of Riemann surfaces appeared in math.DG/0403068 and math.DG/0409220. We introduce new metrics on the moduli and the Teichmuller spaces of Riemann surfaces with very good properties, study their curvatures and boundary behaviors in great detail. Based on the careful analysis of these new metrics, we have a good understanding of the Kahler-Einstein metric from which we prove that the logarithmic cotangent bundle of the moduli space is stable. Another corolary is a proof of the equivalences of all of the known classical complete metrics to the new metrics, in particular Yau's conjectures in the early 80s on the equivalences of the Kahler-Einstein metric to the Teichmuller and the Bergman metric.Comment: Survey article of our recent results on the subject. Typoes corrrecte

    Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Liquid Unloadings

    Get PDF
    Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21 000–35 000 scf methane (0.4–0.7 Mg) per event (95% confidence limits of 10 000–50 000 scf/event). For wells with plunger lifts, emissions averaged 1000–10 000 scf methane (0.02–0.2 Mg) per event (95% confidence limits of 500–12 000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190–400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings

    Cladoceran birth and death rates estimates

    Get PDF
    I. Birth and death rates of natural cladoceran populations cannot be measured directly. Estimates of these population parameters must be calculated using methods that make assumptions about the form of population growth. These methods generally assume that the population has a stable age distribution. 2. To assess the effect of variable age distributions, we tested six egg ratio methods for estimating birth and death rates with data from thirty-seven laboratory populations of Daphnia pulicaria. The populations were grown under constant conditions, but the initial age distributions and egg ratios of the populations varied. Actual death rates were virtually zero, so the difference between the estimated and actual death rates measured the error in both birth and death rate estimates. 3. The results demonstrate that unstable population structures may produce large errors in the birth and death rates estimated by any of these methods. Among the methods tested, Taylor and Slatkin's formula and Paloheimo's formula were most reliable for the experimental data. 4. Further analyses of three of the methods were made using computer simulations of growth of age-structured populations with initially unstable age distributions. These analyses show that the time interval between sampling strongly influences the reliability of birth and death rate estimates. At a sampling interval of 2.5 days (equal to the duration of the egg stage), Paloheimo's formula was most accurate. At longer intervals (7.5–10 days), Taylor and Slatkin's formula which includes information on population structure was most accurate

    Design, Implementation and First Measurements with the Medipix Neutron Camera in CMS

    Full text link
    The Medipix detector is the first device dedicated to measuring mixed-field radiation in the CMS cavern and able to distinguish between different particle types. Medipix2-MXR chips bump bonded to silicon sensors with various neutron conversion layers developed by the IEAP CTU in Prague were successfully installed for the 2008 LHC start-up in the CMS experimental and services caverns to measure the flux of various particle types, in particular neutrons. They have operated almost continuously during the 2010 run period, and the results shown here are from the proton run between the beginning of July and the end of October 2010. Clear signals are seen and different particle types have been observed during regular LHC luminosity running, and an agreement in the measured flux rate is found with the simulations. These initial results are promising, and indicate that these devices have the potential for further and future LHC and high energy physics applications as radiation monitoring devices for mixed field environments, including neutron flux monitoring. Further extensions are foreseen in the near future to increase the performance of the detector and its coverage for monitoring in CMS.Comment: 15 pages, 16 figures, submitted to JINS
    • 

    corecore