1,188 research outputs found

    Choosing a method to reduce selection bias: A tool for researchers

    Get PDF
    Selection bias is well known to affect surveys and epidemiological studies. There have been numerous methods proposed to reduce its effects, so many that researchers may be unclear which method is most suitable for their study; the wide choice may even deter some researchers, for fear of choosing a sub-optimal approach. We propose a straightforward tool to inform researchers of the most promising methods available to reduce selection bias and to assist the search for an appropriate method given their study design and details. We demonstrate the tool using three exam- ples where selection bias may occur; the tool quickly eliminates inappropriate methods and guides the researcher towards those to consider implementing. If more studies con- sider selection bias and adopt methods to reduce it, valuable time and resources will be saved, and should lead to more focused research towards disease prevention or cure

    Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3)

    Get PDF
    The temperature-composition phase diagram of barium calcium titanate zirconate (x(Ba0.7Ca0.3TiO3)(1-x)(BaZr0.2Ti0.8O3); BCTZ) has been reinvestigated using high-resolution synchrotron x-ray powder diffraction. Contrary to previous reports of an unusual rhombohedral-tetragonal phase transition in this system, we have observed an intermediate orthorhombic phase, isostructural to that present in the parent phase, BaTiO3, and we identify the previously assigned T-R transition as a T-O transition. We also observe the O-R transition coalescing with the previously observed triple point, forming a phase convergence region. The implication of the orthorhombic phase in reconciling the exceptional piezoelectric properties with the surrounding phase diagram is discussed

    The Power Spectrum of the PSC Redshift Survey

    Get PDF
    We measure the redshift-space power spectrum P(k) for the recently completed IRAS Point Source Catalogue (PSC) redshift survey, which contains 14500 galaxies over 84% of the sky with 60 micron flux >= 0.6 Jansky. Comparison with simulations shows that our estimated errors on P(k) are realistic, and that systematic errors due to the finite survey volume are small for wavenumbers k >~ 0.03 h Mpc^-1. At large scales our power spectrum is intermediate between those of the earlier QDOT and 1.2 Jansky surveys, but with considerably smaller error bars; it falls slightly more steeply to smaller scales. We have fitted families of CDM-like models using the Peacock-Dodds formula for non-linear evolution; the results are somewhat sensitive to the assumed small-scale velocity dispersion \sigma_V. Assuming a realistic \sigma_V \approx 300 km/s yields a shape parameter \Gamma ~ 0.25 and normalisation b \sigma_8 ~ 0.75; if \sigma_V is as high as 600 km/s then \Gamma = 0.5 is only marginally excluded. There is little evidence for any `preferred scale' in the power spectrum or non-Gaussian behaviour in the distribution of large-scale power.Comment: Latex, uses mn.sty, 14 pages including 11 Postscript figures. Accepted by MNRA

    Operation Moshtarak and the manufacture of credible, “heroic” warfare

    Get PDF
    Richard Lance Keeble argues that Fleet Street’s coverage of the Afghan conflict has served largely to promote the interests of the military/industrial/media complex – and marginalise the views of the public who have consistently appealed in polls for the troops to be brought back hom

    Topology and temperature dependence of the diffuse X-ray scattering in Na0.5Bi0.5TiO3 ferroelectric single crystals

    Get PDF
    The results of high-resolution measurements of the diffuse X-ray scattering produced by a perovskite-based Na0.5Bi0.5TiO3 ferroelectric single crystal between 40 and 620 K are reported. The study was designed as an attempt to resolve numerous controversies regarding the average structure of Na0.5Bi0.5TiO3, such as the mechanism of the phase transitions between the tetragonal, P4bm, and rhombohedral | monoclinic, R3c | Cc, space groups and the correlation between structural changes and macroscopic physical properties. The starting point was to search for any transformations of structural disorder in the temperature range of thermal depoling (420–480 K), where the average structure is known to remain unchanged. The intensity distribution around the {032} pseudocubic reflection was collected using a PILATUS 100K detector at the I16 beamline of the Diamond Light Source (UK). The data revealed previously unknown features of the diffuse scattering, including a system of dual asymmetric L-shaped diffuse scattering streaks. The topology, temperature dependence, and relationship between Bragg and diffuse intensities suggest the presence of complex microstructure in the low-temperature R3c | Cc phase. This microstructure may be formed by the persistence of the higher-temperature P4bm phase, built into a lower-temperature R3c | Cc matrix, accompanied by the related long-range strain fields. Finally, it is shown that a correlation between the temperature dependence of the X-ray scattering features and the temperature regime of thermal depoling is present

    Structural and Magnetic Investigations of Single-Crystals of the Neodymium Zirconate Pyrochlore, Nd2Zr2O7

    Get PDF
    We report structural and magnetic properties studies of large high quality single-crystals of the frustrated magnet, Nd2_2Zr2_2O7_7. Powder x-ray diffraction analysis confirms that Nd2_2Zr2_2O7_7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the axes of the Nd3+^{3+} ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T∌7T\sim7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.Comment: 10 pages, 6 figures, 4 tables. Accepted for publication in Physical Review

    First-Order Reorientation of the Flux-Line Lattice in CaAlSi

    Full text link
    The flux line lattice in CaAlSi has been studied by small angle neutron scattering. A well defined hexagonal flux line lattice is seen just above Hc1 in an applied field of only 54 Oe. A 30 degree reorientation of this vortex lattice has been observed in a very low field of 200 Oe. This reorientation transition appears to be of first-order and could be explained by non-local effects. The magnetic field dependence of the form factor is well described by a single penetration depth of 1496(1) angstroms and a single coherence length of 307(1) angstroms at 2 K. At 1.5 K the penetration depth anisotropy is 2.7(1) with the field applied perpendicular to the c axis and agrees with the coherence length anisotropy determined from critical field measurements.Comment: 5 pages including 6 figures, to appear in Physical Review Letter

    Anomalous thermal expansion in 1D transition-metal cyanides: what makes the novel trimetallic cyanide Cu1/3Ag1/3Au1/3CN behave differently?

    Get PDF
    The structural dynamics of a quasi-one-dimensional (1D) mixed-metal cyanide, Cu1/3Ag1/3Au1/3CN, with intriguing thermal properties is explored. All the current known related compounds with straight-chain structures, such as group 11 cyanides CuCN, AgCN, AuCN and bimetallic cyanides MxM’1-xCN (M, M’ = Cu, Ag, Au), exhibit 1D negative thermal expansion (NTE) along the chains and positive thermal expansion (PTE) perpendicular to them. Cu1/3Ag1/3Au1/3CN exhibits similar PTE perpendicular to the chains, however PTE, rather than NTE, is also observed along the chains. In order to understand the origin of this unexpected behavior, inelastic neutron scattering (INS) measurements were carried out, underpinned by lattice-dynamical density-functional-theory (DFT) calculations. Synchrotron-based pair-distribution-function (PDF) analysis and 13C solid-state nuclear-magnetic-resonance (SSNMR) measurements were also performed to build an input structural model for the lattice dynamical study. The results indicate that transverse motions of the metal ions are responsible for the PTE perpendicular to the chains, as is the case for the related group 11 cyanides. However NTE along the chain due to the tension effect of these transverse motions is not observed. As there are different metal-to-cyanide bond lengths in Cu1/3Ag1/3Au1/3CN, the metals in neighboring chains cannot all be truly co-planar in a straight-chain model. For this system, DFT-based phonon calculations predict small PTE along the chain due to low-energy chain-slipping modes induced by a bond-rotation effect on the weak metallophilic bonds. However the observed PTE is greater than that predicted with the straight-chain model. Small bends in the chain to accommodate truly co-planar metals provide an alternative explanation for thermal behavior. These would mitigate the tension effect induced by the transverse motions of the metals and, as temperature increases and the chains move further apart, a straightening could occur resulting in the observed PTE. This hypothesis is further supported by unusual evolution in the phonon spectra, which suggest small changes in local symmetry with temperature
    • 

    corecore