24 research outputs found

    Detailed Clinical and Psychological Phenotype of the X-linked HNRNPH2-Related Neurodevelopmental Disorder

    Get PDF
    Objective: To expand the clinical phenotype of the X-linked HNRNPH2-related neurodevelopmental disorder in 33 individuals. Methods: Participants were diagnosed with pathogenic or likely pathogenic variants in HNRNPH2 using American College of Medical Genetics and Genomics/Association of Molecular Pathology criteria, largely identified via clinical exome sequencing. Genetic reports were reviewed. Clinical data were collected by retrospective chart review and caregiver report including standardized parent report measures. Results: We expand our clinical characterization of HNRNPH2-related disorders to include 33 individuals, aged 2-38 years, both females and males, with 11 different de novo missense variants, most within the nuclear localization signal. The major features of the phenotype include developmental delay/intellectual disability, severe language impairment, motor problems, growth, and musculoskeletal disturbances. Minor features include dysmorphic features, epilepsy, neuropsychiatric diagnoses such as autism spectrum disorder, and cortical visual impairment. Although rare, we report early stroke and premature death with this condition. Conclusions: The spectrum of X-linked HNRNPH2-related disorders continues to expand as the allelic spectrum and identification of affected males increases.Grant support for L. Boyle provided by TL1TR001875.info:eu-repo/semantics/publishedVersio

    The Function Biomedical Informatics Research Network Data Repository

    Get PDF
    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical datasets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 dataset consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 Tesla scanners. The FBIRN Phase 2 and Phase 3 datasets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN’s multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data

    Book Review: Color Atlas of Neurology

    No full text

    Magnetic resonance imaging guided laser interstitial thermal therapy as treatment for intractable insular epilepsy in children

    No full text
    OBJECTIVE Seizure onset within the insula is increasingly recognized as a cause of intractable epilepsy. Surgery within the insula is difficult, with considerable risks, given the rich vascular supply and location near critical cortex. MRIguided laser interstitial thermal therapy (LiTT) provides an attractive treatment option for insular epilepsy, allowing direct ablation of abnormal tissue while sparing nearby normal cortex. Herein, the authors describe their experience using this technique in a large cohort of children undergoing treatment of intractable localization-related epilepsy of insular onset. METHODS The combined epilepsy surgery database of Cook Children\u27s Medical Center and Dell Children\u27s Hospital was queried for all cases of insular onset epilepsy treated with LiTT. Patients without at least 6 months of follow-up data and cases preoperatively designated as palliative were excluded. Patient demographics, presurgical evaluation, surgical plan, and outcome were collected from patient charts and described. RESULTS Twenty patients (mean age 12.8 years, range 6.1 18.6 years) underwent a total of 24 LiTT procedures; 70% of these patients had normal findings on MRI. Patients underwent a mean follow-up of 20.4 months after their last surgery (range 739 months), with 10 (50%) in Engel Class I, 1 (5%) in Engel Class II, 5 (25%) in Engel Class III, and 4 (20%) in Engel Class IV at last follow-up. Patients were discharged within 24 hours of the procedure in 15 (63%) cases, in 48 hours in 6 (24%) cases, and in more than 48 hours in the remaining cases. Adverse functional effects were experienced following 7 (29%) of the procedures: mild hemiparesis after 6 procedures (all patients experienced complete resolution or had minimal residual dysfunction by 6 months), and expressive language dysfunction after 1 procedure (resolved by 3 months). CONCLUSIONS To their knowledge, the authors present the largest cohort of pediatric patients undergoing insular surgery for treatment of intractable epilepsy. The patient outcomes suggest that LiTT can successfully treat intractable seizures originating within the insula and offers an attractive alternative to open resection. This is the first description of LiTT applied to insular epilepsy and represents one of only a few series describing the use of LiTT in children. The results indicate that seizure reduction after LiTT compares favorably to that after conventional open surgical techniques

    Association of Time to Clinical Remission With Sustained Resolution in Children With New-Onset Infantile Spasms

    No full text
    Background and objectivesStandard therapies (adrenocorticotropic hormone [ACTH], oral steroids, or vigabatrin) fail to control infantile spasms in almost half of children. Early identification of nonresponders could enable rapid initiation of sequential therapy. We aimed to determine the time to clinical remission after appropriate infantile spasms treatment initiation and identify predictors of the time to infantile spasms treatment response.MethodsThe National Infantile Spasms Consortium prospectively followed children aged 2-24 months with new-onset infantile spasms at 23 US centers (2012-2018). We included children treated with standard therapy (ACTH, oral steroids, or vigabatrin). Sustained treatment response was defined as having the last clinically recognized infantile spasms on or before treatment day 14, absence of hypsarrhythmia on EEG 2-4 weeks after treatment, and persistence of remission to day 30. We analyzed the time to treatment response and assessed clinical characteristics to predict sustained treatment response.ResultsAmong 395 infants, clinical infantile spasms remission occurred in 43% (n = 171) within the first 2 weeks of treatment, of which 81% (138/171) responded within the first week of treatment. There was no difference in the median time to response across standard therapies (ACTH: median 4 days, interquartile range [IQR] 3-7; oral steroids: median 3 days, IQR 2-5; vigabatrin: median 3 days, IQR 1-6). Individuals without hypsarrhythmia on the pretreatment EEG (i.e., abnormal but not hypsarrhythmia) were more likely to have early treatment response than infants with hypsarrhythmia at infantile spasms onset (hazard ratio 2.23, 95% CI 1.39-3.57). No other clinical factors predicted early responders to therapy.DiscussionRemission after first infantile spasms treatment can be identified by treatment day 7 in most children. Given the importance of early and effective treatment, these data suggest that children who do not respond to standard infantile spasms therapy within 1 week should be reassessed immediately for additional standard treatment. This approach could optimize outcomes by facilitating early sequential therapy for children with infantile spasms

    Comparison of Cosyntropin, Vigabatrin, and Combination Therapy in New-Onset Infantile Spasms in a Prospective Randomized Trial

    No full text
    In a randomized trial, we aimed to evaluate the efficacy of cosyntropin injectable suspension, 1 mg/mL, compared to vigabatrin for infantile spasms syndrome. An additional arm was included to assess the efficacy of combination therapy (cosyntropin and vigabatrin) compared with cosyntropin monotherapy. Children (2 months to 2 years) with new-onset infantile spasms syndrome and hypsarhythmia were randomized into 3 arms: cosyntropin, vigabatrin, and cosyntropin and vigabatrin combined. Daily seizures and adverse events were recorded, and EEG was repeated at day 14 to assess for resolution of hypsarhythmia. The primary outcome measure was the composite of resolution of hypsarhythmia and absence of clinical spasms at day 14. Fisher exact test was used to compare outcomes. 37 children were enrolled and 34 were included in the final efficacy analysis (1 withdrew prior to treatment and 2 did not return seizure diaries). Resolution of both hypsarhythmia and clinical spasms was achieved in in 9 of 12 participants (75%) treated with cosyntropin, 1/9 (11%) vigabatrin, and 5/13 (38%) cosyntropin and vigabatrin combined. The primary comparison of cosyntropin versus vigabatrin was significant (64% [95% confidence interval 21, 82],  \u3c .01). Adverse events were reported in all 3 treatment arms: 31 (86%) had an adverse event, 7 (19%) had a serious adverse event, and 15 (42%) had an adverse event of special interest with no difference between treatment arms. This randomized trial was underpowered because of incomplete enrollment, yet it demonstrated that cosyntropin was more effective for short-term outcomes than vigabatrin as initial treatment for infantile spasms

    Comparative Effectiveness of Initial Treatment for Infantile Spasms in a Contemporary US Cohort

    No full text
    ObjectiveTo compare the effectiveness of initial treatment for infantile spasms.MethodsThe National Infantile Spasms Consortium prospectively followed up children with new-onset infantile spasms that began at age 2 to 24 months at 23 US centers (2012-2018). Freedom from treatment failure at 60 days required no second treatment for infantile spasms and no clinical spasms after 30 days of treatment initiation. We managed treatment selection bias with propensity score weighting and within-center correlation with generalized estimating equations.ResultsFreedom from treatment failure rates were as follows: adrenocorticotropic hormone (ACTH) 88 of 190 (46%), oral steroids 42 of 95 (44%), vigabatrin 32 of 87 (37%), and nonstandard therapy 4 of 51 (8%). Changing from oral steroids to ACTH was not estimated to affect response (observed 44% estimated to change to 44% [95% confidence interval 34%-54%]). Changing from nonstandard therapy to ACTH would improve response from 8% to 39% (17%-67%), and changing to oral steroids would improve response from 8% to 38% (15%-68%). There were large but not statistically significant estimated effects of changing from vigabatrin to ACTH (29% to 42% [15%-75%]), from vigabatrin to oral steroids (29% to 42% [28%-57%]), and from nonstandard therapy to vigabatrin (8% to 20% [6%-50%]). Among children treated with vigabatrin, those with tuberous sclerosis complex (TSC) responded more often than others (62% vs 29%; p < 0.05).DiscussionCompared to nonstandard therapy, ACTH and oral steroids are superior for initial treatment of infantile spasms. The estimated effectiveness of vigabatrin is between that of ACTH/oral steroids and nonstandard therapy, although the sample was underpowered for statistical confidence. When used, vigabatrin worked best for TSC.Classification of evidenceThis study provides Class III evidence that for children with new-onset infantile spasms, ACTH or oral steroids were superior to nonstandard therapies
    corecore