234 research outputs found

    Super-harmonic injection locking of nano-contact spin-torque vortex oscillators

    Full text link
    Super-harmonic injection locking of single nano-contact (NC) spin-torque vortex oscillators (STVOs) subject to a small microwave current has been explored. Frequency locking was observed up to the fourth harmonic of the STVO fundamental frequency f0f_{0} in microwave magneto-electronic measurements. The large frequency tunability of the STVO with respect to f0f_{0} allowed the device to be locked to multiple sub-harmonics of the microwave frequency fRFf_{RF}, or to the same sub-harmonic over a wide range of fRFf_{RF} by tuning the DC current. In general, analysis of the locking range, linewidth, and amplitude showed that the locking efficiency decreased as the harmonic number increased, as expected for harmonic synchronization of a non-linear oscillator. Time-resolved scanning Kerr microscopy (TRSKM) revealed significant differences in the spatial character of the magnetization dynamics of states locked to the fundamental and harmonic frequencies, suggesting significant differences in the core trajectories within the same device. Super-harmonic injection locking of a NC-STVO may open up possibilities for devices such as nanoscale frequency dividers, while differences in the core trajectory may allow mutual synchronisation to be achieved in multi-oscillator networks by tuning the spatial character of the dynamics within shared magnetic layers.Comment: 21 pages, 8 figure

    Direct observation of magnetization dynamics generated by nano-contact spin-torque vortex oscillators

    Full text link
    Time-resolved scanning Kerr microscopy has been used to directly image the magnetization dynamics of nano-contact (NC) spin-torque vortex oscillators (STVOs) when phase-locked to an injected microwave (RF) current. The Kerr images reveal free layer magnetization dynamics that extend outside the NC footprint, where they cannot be detected electrically, but which are crucial to phase-lock STVOs that share common magnetic layers. For a single NC, dynamics were observed not only when the STVO frequency was fully locked to that of the RF current, but also for a partially locked state characterized by periodic changes in the core trajectory at the RF frequency. For a pair of NCs, images reveal the spatial character of dynamics that electrical measurements show to have enhanced amplitude and reduced linewidth. Insight gained from these images may improve understanding of the conditions required for mutual phase-locking of multiple STVOs, and hence enhanced microwave power emission.Comment: 10 pages, 3 figure

    A behaviour sequence analysis of goal generation processes in a psychosis rehabilitation sample

    Get PDF
    Background: It is suggested that goals are hierarchically organised, with goals at the highest level representing fundamental values and motivations. These abstract goals are said to have a series of sub-goals which represent a means of reaching higher-level goals. While a number of studies have explored goals in the context of psychosis, little is known about idiographic goal generation processes in those experiencing psychosis. Methods: Using a Behaviour Sequence Analysis approach, the aim of the current study was to assess the feasibility of the goal task for use with individuals experiencing psychosis. A total of 73 adults receiving care from UK rehabilitation services completed a goal task designed to elicit higher-level goals. Results: Results indicated that the goal task may be a feasible tool to support those experiencing psychosis to generate lower- and higher-level goals. Conclusions: The goal task utilised in the current study may therefore be a valuable goal generation tool for use by clinicians

    Behaviour Tracking: Using geospatial and behaviour sequence analysis to map crime

    Get PDF
    Crime is a complex phenomenon. To understand the commission of crime, researchers must map both the temporal and the spatial processes involved. The current research combines a temporal method of analysis, Behaviour Sequence Analysis, with geospatial mapping, to outline a new method of integrating temporal and spatial movements of criminals. To show how the new method can be applied, a burglary scenario was used, and the movements and behaviours of a criminal tracked around the property. Results showed that combining temporal and spatial analyses allows for a clearer account of the process of a crime scene. The current method has application to a large range of other crimes and terrorist movements, for instance between cities and movements within each city. Therefore, the current research provides the foundation framework for a novel method of spatio-temporal analyses of crime

    Use of microscale coplanar striplines with indium tin oxide windows in optical ferromagnetic resonance measurements

    Get PDF
    Copyright © 2005 American Institute of PhysicsIt is shown that a coplanar stripline structure containing indium tin oxide windows can be used to perform optical ferromagnetic resonance measurements on a sample grown on an opaque substrate, using a pulsed magnetic field of any desired orientation. The technique is demonstrated by applying it to a thin film of permalloy grown on a Si substrate. The measured precession frequency was found to be in good agreement with macrospin simulations. The phase of the oscillatory Kerr response was observed to vary as the probe spot was scanned across the coplanar stripline structure, confirming that the orientation of the pulsed field varied from parallel to perpendicular relative to the plane of the sample

    Time resolved imaging of the non-linear bullet mode within an injection-locked nano-contact spin Hall nano-oscillator (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this recordThe dataset associated with this article is located in ORE at: https://doi.org/10.24378/exe.923Injection of a radio frequency (RF) current was used to phase lock the SHNO to the TRSKM. The out of plane magnetization was detected by means of the polar magneto optical Kerr effect (MOKE). However, longitudinal MOKE images were dominated by an artifact arising from the edges of the Au NCs. Time resolved imaging revealed the simultaneous excitation of a non-linear `bullet' mode at the centre of the device, once the DC current exceeded a threshold value, and ferromagnetic resonance (FMR) induced by the RF current. However, the FMR response observed for sub-critical DC current values exhibits an amplitude minimum at the centre, which is attributed to spreading of the RF spin current due to the reactance of the device structure. This FMR response can be subtracted to yield images of the bullet mode. As the DC current is increased above threshold, the bullet mode appears to increase in size, suggesting increased translational motion. The reduced spatial overlap of the bullet and FMR modes, and this putative translational motion, may impede the injection locking and contribute to the reduced locking range observed within NC-SHNO devices. This illustrates a more general need to control the geometry of an injection-locked oscillator so that the autonomous dynamics of the oscillator exhibit strong spatial overlap with those resulting from the injected signal.We acknowledge the financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1) and EPSRC Grants Nos. EP/I038470/1 and EP/P008550/1

    Spatial mapping of torques within a spin hall nano-oscillator (article)

    Get PDF
    This is the final version. Available from American Physical Society via the DOI in this recordThe dataset associated with this article is located in ORE at: https://doi.org/10.24378/exe.1003Time-resolved scanning Kerr microscopy (TRSKM) was used to study precessional magnetization dynamics induced by a radio frequency (RF) current within a Al2O3/Py(5 nm)/Pt(6 nm)/Au(150 nm) spin Hall nanooscillator structure. The Au layer was formed into two needle-shaped electrical contacts that concentrated the current in the center of a Py/Pt mesa of 4 μm diameter. Due to the spin Hall effect, current within the Pt layer drives a spin current into the Py layer, exerting a spin transfer torque (STT). By injecting RF current and exploiting the phase sensitivity of TRSKM and the symmetry of the device structure, the STT and Oersted field torques have been separated and spatially mapped. The STT and torque due to the in-plane Oersted field are observed to exhibit minima at the device center that is ascribed to spreading of RF current that is not observed for DC current. Torques associated with the RF current may destabilize the position of the self-localized bullet mode excited by the DC current and inhibit injection locking. The present study demonstrates the need to characterize both DC and RF current distributions carefully.Engineering and Physical Sciences Research Council (EPSRC

    Imaging small-amplitude magnetization dynamics in a longitudinally magnetized microwire

    Get PDF
    Copyright © 2008 The American Physical SocietyWe have used time-resolved scanning Kerr microscopy to study spin waves in a magnetic microwire subjected to a bias magnetic field applied parallel to its long axis. The spin-wave spectra obtained from different points near one end of the wire reveal several normal modes. We found that modes of a higher frequency occupied regions located further from the end of the wire. This was interpreted in terms of the confinement of the spin-wave modes by a nonuniform demagnetizing field. Furthermore, at a particular distance from the end of the wire, two or more modes occupying different regions along the width of the wire were observed. This was interpreted in terms of the confinement of the spin-wave modes due to an asymmetric variation in the local angle between the static magnetization and the effective direction of the wave vector of the confined modes. Images of the dynamic magnetization that are acquired at fixed pump-probe time delays revealed stripes lying perpendicular to the long axis of the wire and, hence, to the applied magnetic field. We interpret the stripe pattern in terms of a collective mode of the quasiperiodic system of ripple domains existing within the polycrystalline sample. Cur results give an additional insight into the connection between the nonuniform static magnetic state in small magnetic elements and their precessional dynamics, which is fundamentally important for the design of future high-speed switching and spin-wave logic devices of magnonics

    Phenological changes in the Southern Hemisphere

    Get PDF
    Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori . We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically supported
    • …
    corecore