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Abstract: Breast-to-brain metastasis (BBM) often represents a terminal event, due to the inability of 

many systemic treatments to cross the blood-brain barrier (BBB), rendering the brain a sanctuary 

site for tumour cells. Identifying genetic variations that can predict the patients who will develop 

BBM would allow targeting of adjuvant treatments to reduce risk while disease bulk is minimal. 

Germ-line genetic variations may contribute to whether a BBM forms by influencing the primary 

tumour sub-type that presents, or by influencing the host-response to the tumour or treatment 

regimen, or by facilitating transition of tumour cells across the BBB and establish a viable brain 

metastasis. The role of mitochondrial DNA (mtDNA) variants specifically in BBM is underexplored. 

Consequently, using a sensitive deep-sequencing approach, we characterised the mtDNA variation 

landscapes of blood samples derived from 13 females who were diagnosed with early onset breast 

cancer and later went on to develop BBM. We also predicted the potential pathogenic significance 

of variations identified in all mtDNA-encoded oxidative phosphorylation (OXPHOS) proteins using 

3D protein structural mapping and analysis, to identify variations worthy of follow-up. From the 

70 variations found in protein coding regions, we reveal novel links between 3 specific mtDNA 

variations and altered OXPHOS structure and function in 23% of the BBM samples. Further studies 

are required to confirm the origin of mtDNA variations, whether they correlate with 1) the predicted 

alterations in mitochondrial function and 2) increased risk of developing breast brain metastasis 

using a much larger cohort of samples. 

Keywords: mtDNA; breast cancer; breast to brain metastasis; 3D protein structural mapping and 

analysis; OXPHOS and long PCR 

1. Introduction 

Breast neoplasms are currently the second highest cause of cancer related death in women. 

Although brain metastases are less common than lesions in the bone or lungs, they often represent a 

terminal event with a projected survival of just 3 to 6 months from diagnosis, with less than 20% of 

patients surviving more than 1 year [1–3]. Poor clinical outcome is due, in part, to the difficulty in 

treating the metastatic site, with systemic treatments generally being unable to penetrate the blood 

brain barrier. Predicting clinical outcome is also difficult due to the complicated interactions of 

metastatic cells with host homeostatic mechanisms, which metastatic cells ultimately exploit for their 

own survival and proliferation [4]. 
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The process of brain metastasis, including breast-to-brain metastasis (BBM), consists of a series 

of steps. In order that a clinically relevant brain lesion is observed, tumour cells must: 1) reach >1mm3 

by rapidly proliferating and establishing new vasculature, 2) invade the host cells and gain access to 

either the circulatory lymphatic or haematogenous systems, 3) survive the lymphatic or 

haematogenous systems and arrest in the capillary beds and extravasate into the brain, and 4) 

proliferate and form metastasis in the brain [4]. Despite this broad understanding of the metastatic 

process, the incidence of BBM is on the increase and there is consequently a need for better 

understanding of the BBM process as well as markers that could predict which patients will develop 

BBM, which in turn could improve current treatments for patients with BBM.  

Patient-derived blood samples are often used to identify associations between genetic variations 

in the germ-line and cancer prognosis [5,6]. Identifying such variations could help predict which 

patients may develop BBM, allowing the targeting of adjuvant treatments aimed at reducing risk 

while the disease bulk is minimal. 

MtDNA, which exists as multiple copies in the mitochondrial matrix, is 16,568 base pairs long 

and encodes 37 genes. These genes provide 13 key catalytic proteins of the oxidative phosphorylation 

(OXPHOS) system, as well as the 2 rRNAs (12S and 16S) and 22 tRNAs vital for their synthesis. Of 

the 13 mtDNA-encoded proteins, 7 contribute to complex I (NADH dehydrogenase), 1 contributes to 

complex III (cytochrome bc1 complex), 3 contribute to complex IV (cytochrome c oxidase) and 2 

contribute to complex V (ATP synthase).  

The OXPHOS system is composed of the mitochondrial respiratory chain (complexes I to IV) 

and ATP synthase (complex V). This system is vital for the production of cellular energy in the form 

of ATP and also has numerous secondary roles in other processes including calcium homeostasis [7], 

reactive oxygen species (ROS) production and signaling [8] and apoptosis [9,10]. Due to the 

importance of OXPHOS, variations in the mtDNA sequence, which can be germ-line or somatic, have 

the capacity to inflict profound effects on cellular function, contributing to or causing numerous 

human diseases (reviewed in [11]). As several hundred mtDNA molecules co-exist within a cell or 

tissue however, each with the capacity to hold different variations, a certain threshold must be met 

for a variation to exert an observable phenotypic effect [12]. The occurrence of multiple mtDNAs 

within a population is termed heteroplasmy. 

Alterations in OXPHOS, as a consequence of mtDNA variations, have a proposed role in 

metastasis [13]. For example, transmitochondrial hybrids (cybrids), formed through the cell-cell 

fusion of enucleate highly metastatic lung cancer cells and mtDNA deplete lung cancer cells with low 

metastatic potential, enhanced the recipient cell’s ability to form metastatic nodules in the lungs of 

mice following tail vein inoculation [14]. Consistent with this, the reciprocal mtDNA exchange 

suppressed the ability of the host cells to form metastatic nodules [14]. Despite the various studies 

that have looked into the incidence and predisposing roleof mtDNA variations in primary breast 

cancer [15–18] and the role of mtDNA variations in the metastatic process using in vitro cellular and 

mouse xenograft models [13-14, 46], no similar studies have been conducted in the context of BBM.  

As a first step towards determining whether mtDNA variations in the germ-line could influence 

the likelihood of developing breast to brain metastasis, in this study we determined the blood 

mtDNA variation landscapes of 13 breast to brain metastasis patients using an established, sensitive 

deep sequencing approach [19]. As expected, numerous mtDNA variations were detected relative to 

the revised Cambridge reference sequence (rCRS [23] [Genbank: NC_012920]). Consequently, in 

order to draw up a short-list of candidates worthy of follow up investiagtion, all of the non 

synonymous variations identified in mtDNA-encoded OXPHOS proteins were then inspected in 

detail in silico using the latest, best quality and homologous 3D protein structure data available to 

analyse and predict their potential functional impact on the OXPHOS system [20] and therefore 

potential links with the BBM process. Until now, this has only been possible for mtDNA-variations 

in complex III and IV genes [19, 20]. However, recent publication of the cryo-EM 3D structures for 

complexes I and V [28,29, respectively] means, for the first time, we can also gain insight into the 

impact of mtDNA-variations at the level of protein structure in these complexes. 

2. Materials and Methods  
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2.1 Breast to brain metastasis patients and DNA samples 

Thirteen whole blood DNA samples were obtained from a subset of the Prospective study of 

Outcomes in Sporadic vs Hereditary breast cancer (POSH) [21,22]. Specifically, these patients had 

developed breast-to-brain metastasis. Patients were aged 40 or younger, and had been diagnosed 

with invasive breast cancer between January 2000 and January 2008. They also had varying NPI 

(Nottingham prognostic index) scores, hormone receptor expression and treatment exposure (Table 

S1). The NPI is used to calculate the prognosis of breast cancer patients following surgery, taking into 

consideration the size of the lesion, the number of lymph nodes affected and the tumour grade (I-III). 

As a collective, the patients in this study had an average NPI score of just above 5.4, meaning 70% of 

patients had a projected survival of 5 years. 

2.2 Long PCR amplification and sequencing of complete mtDNAs 

Based on the method of Lloyd et al. 2015 [19], total DNA was extracted from the total blood of 

each patient using DNeasy Blood & Tissue Kit (Qiagen) according to the manufacturer’s instructions. 

100ng of total whole blood DNA of each patient, was amplified using two overlapping mtDNA 

specific primer pairs: CytbF and HumanLongR (Amplicon 1) or HumanLongF and CytbR (Amplicon 

2) to yield two halves of the mitochondrial genome in each case, which were then resolved by agarose 

gel electrophoresis, purified and quantified (Table S2). Amplicon 1 and 2 from each sample were 

pooled (0.65 nM each) and 1ng of DNA from each pool was used to construct 13 Truseq Nano libraries 

(Illumina) which were combined, sequenced with paired-end 2 X 150 reads on the Illumina MiSeq 

system (Department of Biochemistry, University of Cambridge).  

2.3 Identification of variations, determination of heteroplasmy and annotation 

Post sequencing, reads obtained from the Illumina Resequencing Workflow 

(http://supportres.illumina.com/documents/documentation/software_documentation/miseqreporter/miseq-

reporter-user-guide-15042295-b.pdf), were aligned against the rCRS [23] [Genbank: NC_012920] using 

the Burrows Wheeler Aligner (Galaxy Tools Version (GTv) 1.2.3). The rCRS, which represents 

haplogroup H2a2, is currently the standard sequence used for identifying the presence of mtDNA 

variations.  Refinement of the initial alignment was then conducted through the marking and 

removal of duplicate reads, using Picard beta (GTv 1.56.0), followed by setting up regions for indel 

realignment, realignment around indels, identification of co-variates and recalibration of quality 

scores using the GATK tools beta (GTv 0.0.4, 0.0.6, 0.0.5 and 0.0.6, respectively).  

Variant calling was carried out on the processed alignment with the GATK unified genotyper 

(GTv 0.0.6) to identify regions of the sequences that diverged from the rCRS. Complete processing of 

reads through this workflow removed the presence of several suspected false variations (G3483C, 

T3488A, A3492C and 3492insC), that frequently reside in the unprocessed variant files generated 

directly by the Illumina Resequencing Workflow.   

To further minimise miscalling of variations, those which had previously been identified as 

"false" variants due to misalignments around homopolymer tracts or sequencing errors by Ju et al. 

(A302C, C309T and C3106A; [27]) were discarded. Finally, variants at sites in the rCRS which are 

known to contain rare alleles (A263, A750, A1438, A8860 and A15326) were not considered in further 

analysis [23]. 

To confirm the presence and calculate the heteroplasmy of each of the remaining variations a 

minimum read quality (Phred) score of 30 (Q30) was applied, this means that there is a very low 

likelihood (just a 0.01% chance) that the variations detected were due to sequencing error. To be 

confident that the variants called were not due to sequencing error a stringent heteroplasmy cut off 

of ≥1% was applied, i.e. the number of mtDNA molecules harboring the variant had to be ≥1% or 

≤99% to be considered heteroplasmic. If <1% then the variant would be considered homoplasmic 

wild-type. If >99% then the variant would be considered homoplasmic (pure) mutant. To determine 

heteroplasmy, 250 of the Q30-reads (with the duplicates removed) in the alignment were chosen at 

random and then heteroplasmy was calculated by dividing the depth of reads with the variant 
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nucleotide by 250, and then expressed as a percentage. The presence of variations was further 

confirmed by visually inspecting the full alignments using Tablet[47]. Annotation of the identified 

variations was conducted manually by inputting variations into Mitowheel 

(http://mitowheel.org/mitowheel.html) to ascertain their locus and precise position in the 

mitochondrial genome. All new mtDNAs generated have been submitted to GenBank with the 

following accession numbers (MF317865- MF317877). 

 

2.4 Prevalence of variations in normal/healthy (control) bloods and pathologic tissues 

Previous disease associations of the variations were established through MITOMAP 

(http://www.mitomap.org/MITOMAP) and the human mitochondrial database (HmtDB; 

http://www.hmtdb.uniba.it/hmdb/). The HmtDB was also used to determine the prevalence of 

variations within bloods obtained from normal, healthy individuals (as controls). The HmtDB 

contains over 28,196 and 3,539 mitogenomic sequences obtained from the tissues of normal, healthy 

subjects and patients, respectively. Variation identification by HmtDB is based on the Reconstructed 

Sapiens Reference Sequence (RSRS) and Phylotree mtDNA tree Build 17), this means certain 

variations identified in the BBM mtDNAs relative to the rCRS, do not generate hits using the HmtDB 

(a full list can be found at Phylotree: http://www.phylotree.org/resources/RSRS_vs_rCRS.htm). 

 

2.5 Identifying functional candidates using three-dimensional protein structure mapping and analysis 

Three-dimensional (3D) protein structure mapping and analysis was used to examine and 

predict the functional impact of all non synonymous variations identified in mitochondrial encoded 

proteins. This approach was developed and validated on a number of complex III and complex IV 

variations associated with a broad range of human diseases, and has more recently been used to 

identify mtDNA variations worthy of follow up investigations using in vitro functional assays in 

glioblastoma [19,20, respectively]. Subsequently, several variations found in GBM MT-CYBs and 

predicted to be of significance have been shown to influence complex III properties such as activity 

or drug-sensitivity, when individually introduced into yeast, validating the usefulness of the 

approach [48]. The recent high profile publications of both the mammalian complex I [28] and 

complex V [29] cryo-EM structures, means here, for the first time the pathogenicity of mtDNA 

variations within these complexes can also be predicted, something which precluded the earlier 

studies [19, 20]. 

In brief, the 13 human mitochondrial protein sequences were used to find the latest, best quality 

and most similar OXPHOS complex structures for complexes I, III, IV and V available from RCSB 

PDB (complex I – [PDB:  5LC5] (B. taurus) [28]; complex III – [PDB:1NTZ] (B. taurus) [30] & 

[PDB:1BE3] (B. taurus) [31] ; complex IV [PDB:2EIJ] (B. taurus) [32] and complex V [PDB:5ARA] (B. 

taurus) [29]. Similarity between human sequences and the new complex I and V models are shown in 

Table S3, while the others have been documented previously [20]. 

Relative location and conservation of variations between the human and model sequence 

alignments was identified using ClustalW2 [33] and then annotated with ESPript [34]. Variations 

were mapped to their most homologous associated structures and displayed in PyMOL (Schrödinger, 

LLC). In the case of complex I, maps were generated using the X-ray generated T. thermophilus 

[PDB:4HEA] model, as this was not possible using the cryo-EM generated B. taurus [PDB: 5LC5] 

model, which is not available with docked X-ray crystallographic data. Detailed analysis of the effect 

of variations, based on their proximity to important structural features within the models, was then 

performed on the most similar structures using COOT [35]. Following this, variations were classified 

into 1 of 5 distinct pathogenic categories: (i) frameshift, (ii) active site, (iii) binding pocket, (iv) protein 

interaction region or (v) non pathogenic.  

3. Results and Discussion 
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3.1. Generation of new complete mitochondrial genomes 

Long PCR and sequencing of whole blood DNA from BBM patients yielded 13 high quality new 

complete mitochondrial genomes (BBM1-13]. Each genome was compiled from 1,626,861 ± 196,610 

reads with a mean length of 150 ± 0.3 nucleotides (Table 1). These reads were then mapped against 

the revised Cambridge Reference Sequence (rCRS [23]), forming alignments with an average total of 

1,573,446 ± 196,129 reads and a mean depth of coverage per nucleotide of 14,224 ± 1,781 over the entire 

mitochondrial genome (Table 1).  

3.2 Highly variable mtDNA profiles 

In total, 330 variations were identified across the 13 mitochondrial genomes; this consisted of 

160 nucleotide positions that were found to be altered in just one or multiple samples (detailed in 

Table S4). The vast majority of the total variations (274/330, 83%) were nucleotide substitutions with 

the remaining variations being indels, including 36 insertions and 20 deletions.  

The average number of variations in each sample was 25.38 ± 15.98, with most variations 

occurring in BBM4 and BBM8, which contained 58 and 53, respectively. BBM6, BBM7 and BBM11 

contained just 11 variations each (Figure 1A). The range of heteroplasmy for each variation detected 

in each sample was also diverse, with no significant differences in the average heteroplasmy (72.03% 

± 34.84%) observed between samples (Figure 1B). The total number of variations and average 

heteroplasmy observed in this small cohort of individual samples did not appear to correlate with 

markers known to be associated with the likelihood of developing BBM, i.e. triple negative or Her2+, 

or ER- (see Rostami et al. for review [36]), nor whether the patient had been exposed to radio- or 

chemotherapy prior to the blood DNA being taken for analysis (Table S1), despite some studies 

showing chemotherapies can result in mtDNA instability [37]. This prompted us to look in more 

detail at the specific variations present.  

3.3 D-loop, mt nd4, mt-nd5 and mt cyb are variation hotspots 

Variations were identified in all regions of the mtDNA genome apart from mt nd3 (Figure 2A). 

Variations were predominantly situated in the displacement loop (D loop), a non coding control 

region and known “hotspot” for mtDNA variation in many cancers [38,39], which contained 45% 

(149/330) of all variations. 

In the coding regions, the largest number of variations (12%; 41/330) occurred in mt rnr2, which 

encodes for the mitochondrial 16S rRNA. Three other mitochondrial coding genes also contained a 

high number of variations: mt nd4 and mt nd5 (both encoding complex I subunits) each contained 5% 

(18/330) and mt cyb (encoding for a complex III subunit), which contained 6% (19/330) of the total 

variations. These patterns did not appear to be correlated with locus length (Figure 2B).  

3.4 Heteroplasmy, prevalence and disease-association characteristics of recurrent variations 

Seventy out of 160 variations appeared in 3 or more samples (Table S4). Thirty-two (46%) of the 

recurrent variations were identified in the D-loop and included: A73G, T152C, C299A, A301C, 302insC, 

T310C, 310insC, A16183C, C16256T, T16311C, T16326C and T16519C. The remaining 38 (54%) of the 

recurrent variations were present in the RNA-coding regions. The most frequently recorded 

variations were (in descending order of frequency): A2706G in mt rnr2, C7028T in mt co1, G11719A in 

mt-nd4, A12308G in mt tl2, C14766T in mt cyb, A11467G in mt nd4, G12372A in mt nd5 and G709A in 

mt rnr1.  

Broadly speaking, the recurrent variations could be categorised into two groups (Table S4):  

(1) a large group of almost 100% heteroplasmy, probably reflecting a germ-line origin. Among 

these, three subgoups were identified. Those which were found at a similar frequency in the bloods 

of BBM patients and normal subjects (T152C, T16311C and T16362C) and therefore unlikely to be of 

significance, those which were enriched by 10% or more frequent in the bloods of BBM patients than 

normal subjects (A11467G, G12372A, G709A, A12308G, T10463C and C16256T) and therefore 
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potentially significant, and finally, those which were depleted by ~10% or more in the bloods of BBM 

patients than normal subjects (G11719A, C14766T, A73G, A2706G, C7028T and T16519C). 

(2) a small group with reasonably low average heteroplasmy (34.5 ± 26 %), which could be of 

either germ-line or tumour cell origin. With the exception on A16183C, all of the variations in this 

group were enriched by ~10% or more in the bloods of BBM patients when compared to normal 

subjects (C299A, A301C, 302insC, A3105T, 3105insAC, T310C and 310insC) and therefore of potential 

significance. Interestingly, among the somatic variations detected in primary breast cancer cells, those 

somatic variations detected in the “D310 repeat region of the D-loop”, of which T310C and 310insC 

(this study) would be examples, have been promoted as marker for breast tumourigenesis [40]. 

302insC, T310C, C16256T, T16362C, G709A, T10463C, A11467G, G12372A, A12308G and A16183C have 

been detected in multiple tumour types, including breast and brain tumours previously; T16519C 

and A73G have been detected in multiple tumour types including brain tumours previously; and 

T310C and T16311C have been detected in melanoma and prostate, respectively, although not breast 

or brain tumours. T152C has been detected in ovarian and breast tumours. On the other hand, 

A2706G, C7028T, G11719A, C14766T, C299A, A301C, A3105T and 3105insAC have not been reported 

in tissues of patients with pathology previously (Table S4).  

Although, there is evidence that suggests mtDNA variations can play a role in primary breast 

cancer, e.g. the germ-line variations: T16189C [15], G9055A, T16519C, T239C and C16207T [16,17] are 

associated with breast cancer development susceptibility and G10398A is associated with higher 

breast cancer risk in African women [18], these were not among the recurrent variations in our cohort. 

3.5 Global structural maps 

Overall 116 variations were identified in protein coding regions, of these 79 (68%) were 

synonymous and 37 (32%) were non synonymous (Figure 3A). All non-synonymous variations in the 

mtDNA-encoded OXPHOS genes were mapped onto their corresponding structural homologs, 

yielding the first insight into their distribution across the complexes. Figure 4, which is a 

compendium of the 23 non-synonymous variations identified in all of the BBM patients, reveals a 

non-uniform distribution. Most variations were found in (in descending order): complex I, IV, III and 

V. The high frequency of variations in complexes I, IV and III can be accounted for by variation 

hotspots (again in descending order) in MT-ND1 and ND5 of complex I, MT-CO3 of complex IV and 

MT-CYB of complex III, respectively. MT-ATP6 also contained a couple of variations, while MT-CO1, 

MT-CO2, MT-ND2 and MT-ND6 each contained just one variation; MT-ND3, ND4, ND4L, and MT-

ATP8 (not shown), however, remained variation free. Among the non-synonymous variations, 48% 

(11 of 23) were conserved between the human sequences and the bovine models (Figure S1). Despite 

complex I containing most of the non-synonymous variations, just 30% (3 of 10) were conserved, 

followed by 40% in complex III (2 of 5), 60% in complex IV (4 of 6) and 100% in complex V (2 of 

2)(Figure 4, Figure S1 and Table S3). 

3.6 Three functional candidates identified 

Owing to the 61-91% identity that exists between the human sequences and the homologs ([19] 

and Table S3), we were able to perform, for the first time, detailed 3D structural analysis on all 

complexes of the OXPHOS system containing mtDNA-encoded subunits. Using this approach, we 

were able to predict just 3 out of the 23 non-synonymous variations were likely to have a functional 

impact at the level of protein structural changes, and could be put into previously defined 

structural/functional classes [19,20].  One occurred in a complex III ligand/inhibitor binding pocket 

region (class 3) and two occurred in protein-protein interaction regions (class 4), one in complex IV 

and one in complex V. The remaining variations, including all 10 in complex I, are predicted to be 

non-functional (Table 2). 

The absence, or very low frequency, of all 3 of the functional candidates in the bloods of normal 

healthy individuals further hints that the variations could be important. According to the HmtDB: 

the complex IV variation (E153G) has previously been documented in diabetes, while 

T14819insTTCTATA and S99P have not been previously been documented were not reported (Table 
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S4 and S5). Intriguingly, S99P has been reported as a somatic variant in the TCGAs-BRCA project of 

primary breast invasive carcinoma patients.   

3.7 Mechanistic insights  

The structural consequences of the 3 variations predicted to be functional are illustrated in 

Figures 5 and 7. 

Figure 5A to D depicts the structural consequence of the 14819insTCTATA in frame insertion on 

the only mtDNA-encoded subunit of Complex III: MT-CYB. Complex III is at the centre of the 

OXPHOS system, and catalyses the transfer of electrons from ubiquinol to cytochrome c, which is 

coupled with the translocations of protons across the inner mitochondrial membrane. Complex III is 

also a major site for ROS production. MT-CYB lies at the centre of dimeric complex III, and forms 

intimate interactions with 20 to 22 additional subunits (10 to 11 per MT-CYB monomer) that are 

nuclear DNA-encoded. The subunit contains two hemes and two inhibitor binding sites, the Qo and 

Qi sites. Although the codons remain in register, the introduction of 6 new nucleotides at position 

14819 of the mitochondrial genome eventually causes a serine to phenylalanine substitution at 

position 25 before the addition of a further 2 new amino acids, a tyrosine and a threonine at position 

26 and 27, respectively, of the MT-CYB polypeptide (Figure S2). Although it is difficult to model the 

precise effects of these changes, such a substantial change is unlikely to be easily accommodated by 

the wild type protein (Figure 5A, C) and we predict local mis-folding of the mutant MT-CYB in a 

region proximal to the ubiquinol/ubiquinone binding site (the Qi-site; Figure 5B). The mis-folding 

could also affect the surface of MT-CYB (Figure 5C, D), disrupting its interactions with the nuclear 

subunits, and therefore the stability of complex III. Taken together, 14819insTCTATA is likely have 

an effect on complex III activity. As inhibitors can also bind to the Qi-site, this variation could also 

influence the efficacy of complex III inhibitors eliciting mitochondrially-mediated apoptosis.   

A9664G causes the amino acid substitution E153G in MT-CO3. Complex IV, which is the terminal 

enzyme of the MRC that catalyses the electron transfer from cytochrome c to oxygen, which (like in 

complex III) is also coupled to proton translocation across the inner mitochondrial membrane. MT-

CO3 forms a homodimer at the centre of complex IV. Although MT-CO3 does not house any active 

sites/binding pockets, through its interactions with MT-CO1 and various nuclear encoded subunits 

e.g. COX6A, it is thought to play a key role in the formation and therefore stabilisation of complex IV 

dimer [41]. In wild type MT-CO3, E153 occupies a position on the surface of MT-CO3 and interacts 

with alanine at position 13 of the nuclear-encoded subunit COX6A (Figure 6A). The E153G 

substitution is predicted to eliminate a hydrogen bond interaction (Figure 6B) that usually occurs 

between the large, negatively charged wild type glutamic acid residue of MT-CO3 and the smaller 

hydrophobic alanine of nuclear COX6A, potentially undermining the interaction between E153G and 

COX6A (Figure 6C, D). In summary, E153G could affect complex IV stability and therefore activity. 

Consistent with this view, knockdown of the COX6A subunit (although a more severe scenario than 

E153G) has been shown to reduce activity of complex IV [42–44]. 

T8821C causes an S to P substitution at position 99 of the MT-ATP6 polypeptide (Figure 7), which 

forms part of the F0 region of complex V. Complex V is the primary producer of ATP in eukaryotic 

cells, and in addition to the hydrophobic F0 region that traverses the inner mitochondrial membrane, 

it has a hydrophilic F1-ATPase region that protrudes like a ‘lollipop’ head into the mitochondrial 

matrix. In addition to MT-ATP6 (also known as the a-subunit) the F0 region is formed of an additional 

mtDNA-encoded subunit (MT-ATP8, also referred to as A6L-subunit), several nuclear encoded 

subunits (e, f, g, DAPIT, 2 hydrophobic alpha-helices of b), a proteolipid, and the c8-ring (‘rotor’).  

The F0 and F1 regions are linked via the subunits OSCP, d, F6 and the hydrophilic portions of subunit 

b, referred to as the peripheral stalk. It is proposed that complex V drives the protons that arise in the 

inter membrane space (IMS) as a result of MRC activity through two half-channels formed by MT- 

ATP6 and the ‘rotor’. In one half channel, conserved Glu58 in one of the c-subunits receives a proton 

from the IMS, which induces the c-ring to rotate, with the protonated Glu residues moving away 

from the static portions of the F0 region (the ‘stator’ which includes the two mtDNA-encoded 

subunits as well as components of the peripheral stalk). Once the protonated Glu residues have 
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moved almost a full circle around the ‘rotor’, returning to the static portion of the F0 region, the other 

half channel provides an exit for the protons into the matrix. The resulting in deprotonation of the 

Glu residue, makes it ready to receive another round of protonation via the IMS. The mechanical 

energy created by the rotation, is transmitted via subunits gamma, sigma and epsilon (the ‘shaft’), 

causing conformational changes in the alpha and beta subunits (the ‘blades’) of the F1 region, and  

ultimately ATP hydrolysis (reviewed in [29]). Complex V is often referred to as a Brownian ratchet 

as rotation of the c-ring occurs through Brownian motion, but it is also referred to as a turbine as the 

enzyme has all the parts required to make a simple turbine (a rotor, stator, shaft and blades). Wild 

type MT-ATP6 is a 6-alpha helical bundle, whose tertiary folds are likely to be stabilised by the 12 

proline residues (Figure S1). These proline-mediated kinks are likely to be indispensable for the 

positioning of MT-ATP6 close to the nuclear-encoded subunits of the c-ring rotor, as well as subunit 

b that forms part of the stator, and MT-ATP8, whose function of which is of yet unknown. The 

introduction of an additional proline residue, downstream of a conserved proline at position 94 of 

MT-ATP6 (Figure S1, Figure 7), is likely to affect thermodynamics of the whole subunit, and as a 

consequence, the numerous inter-helical interactions of MT-ATP6 mentioned above [45], this in turn 

could reduce complex V activity. 

3.8 Prevalence of functional candidates in patient bloods 

The detailed structural modelling suggests that altogether just 3 out of the 13 (23%) BBM patients 

carried a single pathogenic variation: BBM4 carries T14819insTTCTATA in complex III, BBM12 carries 

E153G in complex IV, and BBM2 carries S99P in complex V. While the possibility that D-loop, rRNA, 

tRNA and synonymous variations could also affect the OXPHOS function through a variety of 

mechanisms, the current lack of in silico tools available to accurately predict the structural/functional 

effect of such variations on OXPHOS proteins limits informative interpretation. 

3.9 Summary and future prospects 

Although more patients are surviving primary breast cancer, more and more are developing 

secondary metastases, including to the brain. Although there are existing markers that relate to the 

likelihood of developing BBM (e.g. triple negative or Her2+, or ER-), more needs to be done to fully 

understand the process of BBM and develop additional markers that predict whether a patient will 

develop BBM. MtDNA variations are known to play a role in various diseases, including some 

cancers. With ever improving and more cost-effective sequencing technologies, an increasing number 

of mtDNA variations are being detected that are associated with disease. However, proving their role 

in processes like BBM remains difficult, one reason being that it is impossible to introduce single 

mtDNA variations into human mtDNA and observe direct phenotypic effects.  

Our focus here was two-fold: to screen the bloods of BBM patients using an established and 

sensitive deep sequencing approach for mtDNA variation detection (and to predict their effect on 

mitochondrial function using an equally established 3D structural modelling approach [19]). We 

reveal that the vast majority of mtDNA protein-coding variations detected in the majority of patients 

tested are not predicted to have a major impact on mitochondrial function. This said, 3 of the mtDNA 

variations detected in three of the patients were predicted to have an impact at the level of OXPHOS 

protein structure. The potential multiple origins of the mtDNA variations (e.g. neutrophil, monocyte, 

myeloid dendritic, natural killer, T and B [49], as well tumour circulating cells [4]) detected in the 

bloods, as well as the different selective pressures which may act upon them, however, make it 

difficult to fully predict their significance on the process of BBM (even if they are predicted to evoke 

a change on the OXPHOS system), and requires further investigation using matched primary 

tumour-blood-secondary tumour samples to confirm their origin. Other future work could include 

determining how the 3 mtDNA variations correlate with 1) the predicted alterations in mitochondrial 

function using in vitro studies and 2) with increased risk of developing breast brain metastasis using 

a much larger cohort of patient samples. This study also serves as a resource by highlighting a list of 

several mtDNA variations which are predicted to be non-functional and therefore not worthy of 

further investigation, which should help scientists and clinicians avoid wasting resources. Such a 
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systematic approach of analyzing mtDNA variations could help improve our understanding of their 

role in the process of BBM as well as aid the development of markers that predict whether patients 

develop BBM in the future. 
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Tables with captions 

Table 1. Summary of sequencing read statistics used to generate new complete breast-to-brain 

metastasis blood mtDNAs. 

Abbreviation: nt - nucleotide, DOC - depth of coverage 

Table 2. Heteroplasmy, prevalence of non-synonymous variations in the mtDNA complex genes 

identified within the mtDNA landscapes of breast-to-brain blood samples. 

Locus 

Specific 

Nucleotide 

Variant 

Amino Acid 

change 

Average 

heteroplasmy (% ± 

SD) 

% 

Hmt

DB 

% 

BBM 

Specific Sample 

IDs (BBM) 

MT-ND1 A3796G T164A 99.6* 0.5 7.7 6 

MT-ND1 C3992T T229M 99.2* 0.7 7.7 10 

MT-ND1 A4024G T240A 99.2* 0.6 7.7 10 

MT-ND1 T4216C Y304H 99.4±0.3* 9.9 15.4 1 and 12 

MT-ND2 A4917G N150D 98.6±0.9* 4.7 15.4 1 and 12 

MT-ND5 A12397G T21A 99.6* 0.5 7.7 5 

MT-ND5 C12557T T74I 98.4* 0.3 7.7 4 

MT-ND5 G13813A V493I 99.6* <0.1 7.7 5 

MT-ND5 G13889A C518Y 99.6* 0.1 7.7 10 

MT-ND6 A14582G V31A 99.6* 0.6 7.7 10 

MT-CYB C14766T T7I 98.9±0.8* 77.3 46.2 1/ 4/ 8/ 9/ 12/ 13 

MT-CYB A14793G H16R 99.6±0.0* 2.2 15.4 9 and 13 

MT-CYB 
T14819insTTCT

ATA 
S25 2.4 - 7.7 12 

MT-CYB A15218G T158A 100±0.0* 1.9 7.7 9 

MT-CYB C15452A L236I 99.4±0.9* 9.1 15.4 1 and 12 

MT-CO1 G6267A A122T 98.8* 0.2 7.7 2 

MT-CO2 T8265C L227P 24.8 <0.1 7.7 4 

MT-CO3 C9469T T88I 100* 0.1 7.7 13 

MT-CO3 G9477A V91I 99.8±0.3* 4.0 15.4 9 and 13 

MT-CO3 A9664G E153G 98.8* 0.1 7.7 4 

Sample ID Total 

number of 

reads 

Number 

of reads 

mapped 

Mean 

read 

length 

Reads 

Mapped 

(%) 

Mean 

DOC/nt 
Accession 

No 

BBM1 1286809 1244758 150 97 11255 MF317865 

BBM2 1652912 1598870 150 97 14471 MF317866 

BBM3 1398435 1354576 150 97 12236 MF317867 

BBM4 1733369 1675403 150 97 15133 MF317868 

BBM5 1606805 1505339 150 94 13587 MF317869 

BBM6 2080624 2044788 150 98 18515 MF317870 

BBM7 1616133 1587251 150 98 14358 MF317871 

BBM8 1540641 1482632 150 96 13398 MF317872 

BBM9 1709391 1649532 150 96 14911 MF317873 

BBM10 1796414 1746692 150 97 15804 MF317874 

BBM11 1517582 1475338 150 97 13331 MF317875 

BBM12 1709260 1623266 150 95 14655 MF317876 

BBM13 1500821 1466356 150 98 13252 MF317877 

       

Average 1626861 1573446 150 97 14224 

 
 

       

Standard 

Deviation 

196610 

 

196129 

 

0.3 

 

1.2 1781 
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MT-CO3 A9667G N154S 99.2* 0.7 7.7 9 

MT-

ATP6 
T8821C S99P 83.2 <0.1 7.7 2 

MT-

ATP6 
G8989A A155T 97.2 <0.1 7.7 12 

 

Grey shading indicates variation classed as functional at the level of protein structural changes. The 

unshaded variations are classified as non-functional. %hmtDB and %BBM indicate prevalence in the 

human mitochondrial database and BBM cohort (this study), respectively. *Signifies homoplasmic 

(pure) mutant (see materials and methods).  
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Figures with captions 

 

Figure 1. Total number (A) and average heteroplasmy (B) of mtDNA variations in breast-to-brain 

metastasis patient blood mtDNAs. Error bars indicate standard deviation. 

  

Figure 2. Presence of variations in breast-to-brain metastasis patient blood across mtDNA loci. (A) 

Total number of mtDNA variations identified in both coding and non-coding loci. (B) Total number 

of variations expressed per nucleotide in each of the mtDNA loci.  

  

Figure 3. Pattern of synonymous and non-synonymous mtDNA variations in breast-to-brain blood 

mtDNAs. (A) Total and (B) across loci.   
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Figure 4. Global map of non-synonymous variations identified in the mitochondrial OXPHOS proteins of breast-to-brain metastasis patient blood mtDNAs. Variations 

mapped to T. thermophilus complex I homologues [PDB:4HEA], B. taurus complex III homologue [PDB:1BE3], B. taurus complex IV homologue [PDB:2EIJ] and B. taurus 

complex V homologoue [PDB: 5ARA]. The carbon alphas of residues that are conserved and non-conserved between the human sequences and the bovine models are 

highlighted as red and blue spheres respectively, including for complex I eventhough the T. thermophilus structure is shown. The conserved residue N150D is not shown 

as there is no equivalent residue present in 4HEA 
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Figure 5.  Structural consequences of the class 3 binding pocket variation 14819insTCTATA. The 

variation causes a serine to phenylalanine substitution and the addition of two amino acids at 

positions 25-27 of the complex III protein MT-CYB. MT-CYB is rendered as a space filling model 

(orange), with (A) the wild type Qi-site shown with the deeply buried heme (green) and bound 

ubiquinone (magenta; PDB 1NTZ). (B) The amino acid changes induced by the variation occur in the 

vicinity of the Qi-site (in red). (C) The surface of the wild type MT-CYB monomer. (D) The variant is 

likely to cause local mis-folding of MT-CYB (in red), disrupting its interaction with surrounding 

nuclear encoded subunits. Such changes to the MT-CYB Qi-site and surface are likely to interfere with 

ubiquinone/ubiquinol binding, and ultimately complex III activity.  
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Figure 6.  Structural consequences of the class 4 interaction variation A9664G. (A) Wild type E153 

(blue sticks) in MT-CO3 (yellow ribbons) forms an interaction with A13 (cyan sticks) in COX6A (grey 

ribbon).  (B) The variant G153 (red sticks) results in the loss of a hydrogen bond with A13. (C) The 

wild type MT-CO3 is shown as a surface model, showing E153 (blue) forms a tight interaction with 

A13 of COX6A (cyan). (D) Surface illustration of variant G153 (red), which no longer interacts with 

COX6A, which could affect the stability of complex IV. 
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Figure 7.  Structural consequences of the class 4 variation T8821C. Wild type MT-ATP6 (light green) 

is shown as a surface model and is formed of six kinked alpha-helices that stabilise the subunit and 

allow it to form intricate inter-helical interactions with subunit b (wheat), MT-ATP8 (not shown) and 

the c-ring (grey). Together with the hydrophobic portions of subunit b and MT-ATP8, MT-ATP6 form 

the static part of the F0 region, with the c-ring forming the rotary portion. It is likely that several 

proline residues (blue), conserved between the human sequence and the bovine model, are 

responsible for the kinks observed in MT-ATP6. The substitution of a serine for a proline (red) at 

position 99 in one of the helices, is likely to interfere with tertiary fold and destabilise the protein and 

disrupt its interactions, influencing complex V activity.  

 

 

 

 

 

 

 

 


