3,167 research outputs found

    Stability of the Period-Doubled Core of the 90-degree Partial in Silicon

    Full text link
    In a recent Letter [N. Lehto and S. Oberg, Phys. Rev. Lett. 80, 5568 (1998)], Lehto and Oberg investigated the effects of strain fields on the core structure of the 90-degree partial dislocation in silicon, especially the influence of the choice of supercell periodic boundary conditions in theoretical simulations. We show that their results for the relative stability between the two structures are in disagreement with cell-size converged tight-binding total energy (TBTE) calculations, which suggest the DP core to be more stable, regardless of the choice of boundary condition. Moreover, we argue that this disagreement is due to their use of a Keating potential.Comment: 1 page. Submitted to Comments section of PRL. Also available at http://www.physics.rutgers.edu/~dhv/preprints/rn_dcom/index.htm

    A new correlator in quantum spin chains

    Full text link
    We propose a new correlator in one-dimensional quantum spin chains, the s−s-Emptiness Formation Probability (s−s-EFP). This is a natural generalization of the Emptiness Formation Probability (EFP), which is the probability that the first nn spins of the chain are all aligned downwards. In the s−s-EFP we let the spins in question be separated by ss sites. The usual EFP corresponds to the special case when s=1s=1, and taking s>1s>1 allows us to quantify non-local correlations. We express the s−s-EFP for the anisotropic XY model in a transverse magnetic field, a system with both critical and non-critical regimes, in terms of a Toeplitz determinant. For the isotropic XY model we find that the magnetic field induces an interesting length scale.Comment: 6 pages, 1 figur

    Random matrix theory, the exceptional Lie groups, and L-functions

    Full text link
    There has recently been interest in relating properties of matrices drawn at random from the classical compact groups to statistical characteristics of number-theoretical L-functions. One example is the relationship conjectured to hold between the value distributions of the characteristic polynomials of such matrices and value distributions within families of L-functions. These connections are here extended to non-classical groups. We focus on an explicit example: the exceptional Lie group G_2. The value distributions for characteristic polynomials associated with the 7- and 14-dimensional representations of G_2, defined with respect to the uniform invariant (Haar) measure, are calculated using two of the Macdonald constant term identities. A one parameter family of L-functions over a finite field is described whose value distribution in the limit as the size of the finite field grows is related to that of the characteristic polynomials associated with the 7-dimensional representation of G_2. The random matrix calculations extend to all exceptional Lie groupsComment: 14 page

    Regional differences in nutrient-induced secretion of gut serotonin

    Get PDF
    Enterochromaffin (EC) cells located in the gastrointestinal (GI) tract provide the vast majority of serotonin (5-HT) in the body and constitute half of all enteroendocrine cells. EC cells respond to an array of stimuli, including various ingested nutrients. Ensuing 5-HT release from these cells plays a diverse role in regulating gut motility as well as other important responses to nutrient ingestion such as glucose absorption and fluid balance. Recent data also highlight the role of peripheral 5-HT in various pathways related to metabolic control. Details related to the manner by which EC cells respond to ingested nutrients are scarce and as that the nutrient environment changes along the length of the gut, it is unknown whether the response of EC cells to nutrients is dependent on their GI location. The aim of the present study was to identify whether regional differences in nutrient sensing capability exist in mouse EC cells. We isolated mouse EC cells from duodenum and colon to demonstrate differential responses to sugars depending on location. Measurements of intracellular calcium concentration and 5-HT secretion demonstrated that colonic EC cells are more sensitive to glucose, while duodenal EC cells are more sensitive to fructose and sucrose. Short-chain fatty acids (SCFAs), which are predominantly synthesized by intestinal bacteria, have been previously associated with an increase in circulating 5-HT; however, we find that SCFAs do not acutely stimulate EC cell 5-HT release. Thus, we highlight that EC cell physiology is dictated by regional location within the GI tract, and identify differences in the regional responsiveness of EC cells to dietary sugars.Alyce M. Martin, Amanda L. Lumsden, Richard L. Young, Claire F. Jessup, Nick J. Spencer, Damien J. Keatin

    Observational constraints on Cosmic Reionization

    Full text link
    Recent observations have set the first constraints on the epoch of reionization (EoR), corresponding to the formation epoch of the first luminous objects. Studies of Gunn-Peterson (GP) absorption, and related phenomena, suggest a qualitative change in the state of the intergalactic medium (IGM) at z∌6z \sim 6, indicating a rapid increase in the neutral fraction of the IGM, from xHI10−3x_{HI} 10^{-3}, perhaps up to 0.1, at z≄6z \ge 6. Conversely, transmission spikes in the GP trough, and the evolution of the \lya galaxy luminosity function indicate xHI<0.5x_{HI} < 0.5 at z∌6.5z\sim 6.5, while the large scale polarization of the cosmic microwave background (CMB) implies a significant ionization fraction extending to higher redshifts, z∌11±3z \sim 11 \pm 3. The results suggest that reionization is less an event than a process, with the process beginning as early as z∌14z \sim 14, and with the 'percolation', or 'overlap' phase ending at z∌6z \sim 6. The data are consistent with low luminosity star forming galaxies as being the dominant sources of reionizing photons. Low frequency radio telescopes currently under construction should be able to make the first direct measurements of HI 21cm emission from the neutral IGM during the EoR, and upcoming measurements of secondary CMB temperature anisotropy will provide fine details of the dynamics of the reionized IGM.Comment: to appear in ARAA 2006, vol 44, page 415-462; latex. 84 pages. 15 fi

    Properties of a continuous-random-network model for amorphous systems

    Full text link
    We use a Monte Carlo bond-switching method to study systematically the thermodynamic properties of a "continuous random network" model, the canonical model for such amorphous systems as a-Si and a-SiO2_2. Simulations show first-order "melting" into an amorphous state, and clear evidence for a glass transition in the supercooled liquid. The random-network model is also extended to study heterogeneous structures, such as the interface between amorphous and crystalline Si.Comment: Revtex file with 4 figure

    Using the Hadamard and related transforms for simplifying the spectrum of the quantum baker's map

    Full text link
    We rationalize the somewhat surprising efficacy of the Hadamard transform in simplifying the eigenstates of the quantum baker's map, a paradigmatic model of quantum chaos. This allows us to construct closely related, but new, transforms that do significantly better, thus nearly solving for many states of the quantum baker's map. These new transforms, which combine the standard Fourier and Hadamard transforms in an interesting manner, are constructed from eigenvectors of the shift permutation operator that are also simultaneous eigenvectors of bit-flip (parity) and possess bit-reversal (time-reversal) symmetry.Comment: Version to appear in J. Phys. A. Added discussions; modified title; corrected minor error

    Orbit structure and (reversing) symmetries of toral endomorphisms on rational lattices

    Get PDF
    We study various aspects of the dynamics induced by integer matrices on the invariant rational lattices of the torus in dimension 2 and greater. Firstly, we investigate the orbit structure when the toral endomorphism is not invertible on the lattice, characterising the pretails of eventually periodic orbits. Next we study the nature of the symmetries and reversing symmetries of toral automorphisms on a given lattice, which has particular relevance to (quantum) cat maps.Comment: 29 pages, 3 figure

    Studies on X-ray Thomson Scattering from Antiferroquadrupolar Order in TmTe

    Full text link
    We study Thomson scattering from the antiferroquadrupole ordering phase in TmTe. On the basis of the group theoretical treatment, we classify the selection rules of the scattering intensity governed by the orientation of the scattering vector G. Then, numerical verification is performed by invoking the ground states which are deduced from a J=7/2 multiplet model. The obtained intensity varies drastically depending on the magnitude and direction of G. We also calculate the scattering intensities under the applied field for H//(001) and (110). Their results behave differently when the orientation of G is changed, which is ascribed to the difference of their primary order parameters; O_{2}^{0} and O_{2}^{2} for H // (001) and (110), respectively. We make critical comparisons between our results for TmTe and the experimental ones for CeB_6. First, we assert that the intensities expected from TmTe at several forbidden Bragg spots are sufficient enough to be experimentally detected. Second, their intensities at (7/2,1/2,1/2) differ significantly and may be attributed to the difference of the order parametersbetween the \Gamma_3-type (O_{2}^{2} and O_{2}^{0}) and \Gamma_5-type (O_{yz}, O_{zx}, and O_{xy}) components, respectively.Comment: 18 pages, 3 figures, to be published in J. Phys. Soc. Jp
    • 

    corecore