5,516 research outputs found
Investigating the Structure of the Windy Torus in Quasars
Thermal mid-infrared emission of quasars requires an obscuring structure that
can be modeled as a magneto-hydrodynamic wind in which radiation pressure on
dust shapes the outflow. We have taken the dusty wind models presented by
Keating and collaborators that generated quasar mid-infrared spectral energy
distributions (SEDs), and explored their properties (such as geometry, opening
angle, and ionic column densities) as a function of Eddington ratio and X-ray
weakness. In addition, we present new models with a range of magnetic field
strengths and column densities of the dust-free shielding gas interior to the
dusty wind. We find this family of models -- with input parameters tuned to
accurately match the observed mid-IR power in quasar SEDs -- provides
reasonable values of the Type 1 fraction of quasars and the column densities of
warm absorber gas, though it does not explain a purely luminosity-dependent
covering fraction for either. Furthermore, we provide predictions of the
cumulative distribution of E(B-V) values of quasars from extinction by the wind
and the shape of the wind as imaged in the mid-infrared. Within the framework
of this model, we predict that the strength of the near-infrared bump from hot
dust emission will be correlated primarily with L/L_Edd rather than luminosity
alone, with scatter induced by the distribution of magnetic field strengths.
The empirical successes and shortcomings of these models warrant further
investigations into the composition and behaviour of dust and the nature of
magnetic fields in the vicinity of actively accreting supermassive black holes.Comment: 11 pages, 6 figures, accepted for publication in MNRA
Calibration of the spin-scan ozone imager aboard the dynamics Explorer 1 satellite
The calibration technique, which contains the calibrated backscattered radiance values necessary for performing the calibrations, is presented. The calibration constants for September to October 1981 to determine total columnar ozone from the Spin-Scan Ozone Imager (SOI), which is a part of the auroral imaging instrumentation aboard the Dynamics Explorer 1 Satellite, are provided. The precision of the SOI-derived total columnar ozone is estimated to be better than 2.4 percent. Linear regression analysis was used to calculate correlation coefficients between total columnar ozone obtained from Dobson ground stations and SOI which indicate that the SOI total columnar ozone determination is equally accurate for clear or cloudy weather conditions
Attitude determination of the spin-stabilized Project Scanner spacecraft
Attitude determination of spin-stabilized spacecraft using star mapping techniqu
Spectral statistics for unitary transfer matrices of binary graphs
Quantum graphs have recently been introduced as model systems to study the
spectral statistics of linear wave problems with chaotic classical limits. It
is proposed here to generalise this approach by considering arbitrary, directed
graphs with unitary transfer matrices. An exponentially increasing contribution
to the form factor is identified when performing a diagonal summation over
periodic orbit degeneracy classes. A special class of graphs, so-called binary
graphs, is studied in more detail. For these, the conditions for periodic orbit
pairs to be correlated (including correlations due to the unitarity of the
transfer matrix) can be given explicitly. Using combinatorial techniques it is
possible to perform the summation over correlated periodic orbit pair
contributions to the form factor for some low--dimensional cases. Gradual
convergence towards random matrix results is observed when increasing the
number of vertices of the binary graphs.Comment: 18 pages, 8 figure
A new correlator in quantum spin chains
We propose a new correlator in one-dimensional quantum spin chains, the
Emptiness Formation Probability (EFP). This is a natural generalization
of the Emptiness Formation Probability (EFP), which is the probability that the
first spins of the chain are all aligned downwards. In the EFP we let
the spins in question be separated by sites. The usual EFP corresponds to
the special case when , and taking allows us to quantify non-local
correlations. We express the EFP for the anisotropic XY model in a
transverse magnetic field, a system with both critical and non-critical
regimes, in terms of a Toeplitz determinant. For the isotropic XY model we find
that the magnetic field induces an interesting length scale.Comment: 6 pages, 1 figur
Signatures of homoclinic motion in quantum chaos
Homoclinic motion plays a key role in the organization of classical chaos in
Hamiltonian systems. In this Letter, we show that it also imprints a clear
signature in the corresponding quantum spectra. By numerically studying the
fluctuations of the widths of wavefunctions localized along periodic orbits we
reveal the existence of an oscillatory behavior, that is explained solely in
terms of the primary homoclinic motion. Furthermore, our results indicate that
it survives the semiclassical limit.Comment: 5 pages, 4 figure
What is the probability that a random integral quadratic form in variables has an integral zero?
We show that the density of quadratic forms in variables over that are isotropic is a rational function of , where the rational
function is independent of , and we determine this rational function
explicitly. When real quadratic forms in variables are distributed
according to the Gaussian Orthogonal Ensemble (GOE) of random matrix theory, we
determine explicitly the probability that a random such real quadratic form is
isotropic (i.e., indefinite).
As a consequence, for each , we determine an exact expression for the
probability that a random integral quadratic form in variables is isotropic
(i.e., has a nontrivial zero over ), when these integral quadratic
forms are chosen according to the GOE distribution. In particular, we find an
exact expression for the probability that a random integral quaternary
quadratic form has an integral zero; numerically, this probability is
approximately .Comment: 17 pages. This article supercedes arXiv:1311.554
Negative moments of characteristic polynomials of random GOE matrices and singularity-dominated strong fluctuations
We calculate the negative integer moments of the (regularized) characteristic
polynomials of N x N random matrices taken from the Gaussian Orthogonal
Ensemble (GOE) in the limit as . The results agree nontrivially
with a recent conjecture of Berry & Keating motivated by techniques developed
in the theory of singularity-dominated strong fluctuations. This is the first
example where nontrivial predictions obtained using these techniques have been
proved.Comment: 13 page
- …