151 research outputs found

    Parallel State and Federal Court Class Actions

    Get PDF

    Systems Theory as the Foundation for Understanding Systems

    Get PDF
    As currently used, systems theory is lacking a universally agreed upon definition. The purpose of this paper is to offer a resolution by articulating a formal definition of systems theory. This definition is presented as a unified group of specific propositions which are brought together by way of an axiom set to form a system construct: systems theory. This construct affords systems practitioners and theoreticians with a prescriptive set of axioms by which a system must operate; conversely, any set of entities identified as a system may be characterized by this set of axioms. Given its multidisciplinary theoretical foundation and discipline-agnostic framework, systems theory, as it is presented here, is posited as a general approach to understanding system behavior. © 2013 Wiley Periodicals, Inc

    Individual Response to Risk As a Function of Normative Social Pressure: A Pilot Study of Seat Belt Use

    Get PDF
    The authors attempt to clarify some of the variables that influence whether people act appropriately when a Risk is substantial and subject to individual control. They do so by reporting results of a pilot study of seat belt use. Also, the authors believe their approach to be generalizable to problems such as encouraging people to test for radon, to use condoms to prevent AIDS or to quit smoking

    Evidence for H2 Dissociation and Recombination Heat Transport in the Atmosphere of KELT-9b

    Get PDF
    Phase curve observations provide an opportunity to study the energy budgets of exoplanets by quantifying the amount of heat redistributed from their daysides to their nightsides. Theories of phase curves for hot Jupiters have focused on the balance between radiation and dynamics as the primary parameter controlling heat redistribution. However, recent phase curves have shown deviations from the trends that emerge from this theory, which has led to work on additional processes that may affect hot Jupiter energy budgets. One such process, molecular hydrogen dissociation and recombination, can enhance energy redistribution on ultra-hot Jupiters with temperatures above similar to 2000 K. In order to study the impact of H-2 dissociation on ultra-hot Jupiters, we present a phase curve of KELT-9b observed with the Spitzer Space Telescope at 4.5 mu m. KELT-9b is the hottest known transiting planet, with a 4.5 mu m dayside brightness temperature of 5 sigma confidence. This discrepancy may be due to magnetic effects in the planet's highly ionized atmosphere.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Universal logic with encoded spin qubits in silicon

    Full text link
    Qubits encoded in a decoherence-free subsystem and realized in exchange-coupled silicon quantum dots are promising candidates for fault-tolerant quantum computing. Benefits of this approach include excellent coherence, low control crosstalk, and configurable insensitivity to certain error sources. Key difficulties are that encoded entangling gates require a large number of control pulses and high-yielding quantum dot arrays. Here we show a device made using the single-layer etch-defined gate electrode architecture that achieves both the required functional yield needed for full control and the coherence necessary for thousands of calibrated exchange pulses to be applied. We measure an average two-qubit Clifford fidelity of 97.1±0.2%97.1 \pm 0.2\% with randomized benchmarking. We also use interleaved randomized benchmarking to demonstrate the controlled-NOT gate with 96.3±0.7%96.3 \pm 0.7\% fidelity, SWAP with 99.3±0.5%99.3 \pm 0.5\% fidelity, and a specialized entangling gate that limits spreading of leakage with 93.8±0.7%93.8 \pm 0.7\% fidelity

    Constraints on axion-like polarization oscillations in the cosmic microwave background with POLARBEAR

    Full text link
    Very light pseudoscalar fields, often referred to as axions, are compelling dark matter candidates and can potentially be detected through their coupling to the electromagnetic field. Recently a novel detection technique using the cosmic microwave background (CMB) was proposed, which relies on the fact that the axion field oscillates at a frequency equal to its mass in appropriate units, leading to a time-dependent birefringence. For appropriate oscillation periods this allows the axion field at the telescope to be detected via the induced sinusoidal oscillation of the CMB linear polarization. We search for this effect in two years of POLARBEAR data. We do not detect a signal, and place a median 95%95 \% upper limit of 0.65∘0.65 ^\circ on the sinusoid amplitude for oscillation frequencies between 0.02 days−10.02\,\text{days}^{-1} and 0.45 days−10.45\,\text{days}^{-1}, which corresponds to axion masses between 9.6×10−22 eV9.6 \times 10^{-22} \, \text{eV} and 2.2×10−20 eV2.2\times 10^{-20} \,\text{eV}. Under the assumptions that 1) the axion constitutes all the dark matter and 2) the axion field amplitude is a Rayleigh-distributed stochastic variable, this translates to a limit on the axion-photon coupling gϕγ<2.4×10−11 GeV−1×(mϕ/10−21 eV)g_{\phi \gamma} < 2.4 \times 10^{-11} \,\text{GeV}^{-1} \times ({m_\phi}/{10^{-21} \, \text{eV}}).Comment: 17 pages, 5 figures, 2 tables. Published in Physical Review
    • …
    corecore