189 research outputs found

    A Set of Computationally Designed Orthogonal Antiparallel Homodimers that Expands the Synthetic Coiled-Coil Toolkit

    Get PDF
    Molecular engineering of protein assemblies, including the fabrication of nanostructures and synthetic signaling pathways, relies on the availability of modular parts that can be combined to give different structures and functions. Currently, a limited number of well-characterized protein interaction components are available. Coiled-coil interaction modules have been demonstrated to be useful for biomolecular design, and many parallel homodimers and heterodimers are available in the coiled-coil toolkit. In this work, we sought to design a set of orthogonal antiparallel homodimeric coiled coils using a computational approach. There are very few antiparallel homodimers described in the literature, and none have been measured for cross-reactivity. We tested the ability of the distance-dependent statistical potential DFIRE to predict orientation preferences for coiled-coil dimers of known structure. The DFIRE model was then combined with the CLASSY multistate protein design framework to engineer sets of three orthogonal antiparallel homodimeric coiled coils. Experimental measurements confirmed the successful design of three peptides that preferentially formed antiparallel homodimers that, furthermore, did not interact with one additional previously reported antiparallel homodimer. Two designed peptides that formed higher-order structures suggest how future design protocols could be improved. The successful designs represent a significant expansion of the existing protein-interaction toolbox for molecular engineers.National Science Foundation (U.S.) (MCB-0950233)United States. National Institutes of Health (GM67681)National Science Foundation (U.S.) (DBI-0821391

    Protein binding specificity versus promiscuity

    Get PDF
    Interactions between macromolecules in general, and between proteins in particular, are essential for any life process. Examples include transfer of information, inhibition or activation of function, molecular recognition as in the immune system, assembly of macromolecular structures and molecular machines, and more. Proteins interact with affinities ranging from millimolar to femtomolar and, because affinity determines the concentration required to obtain 50% binding, the amount of different complexes formed is very much related to local concentrations. Although the concentration of a specific binding partner is usually quite low in the cell (nanomolar to micromolar), the total concentration of other macromolecules is very high, allowing weak and non-specific interactions to play important roles. In this review we address the question of binding specificity, that is, how do some proteins maintain monogamous relations while others are clearly polygamous. We examine recent work that addresses the molecular and structural basis for specificity versus promiscuity. We show through examples how multiple solutions exist to achieve binding via similar interfaces and how protein specificity can be tuned using both positive and negative selection (specificity by demand). Binding of a protein to numerous partners can be promoted through variation in which residues are used for binding, conformational plasticity and/or post-translational modification. Natively unstructured regions represent the extreme case in which structure is obtained only upon binding. Many natively unstructured proteins serve as hubs in protein–protein interaction networks and such promiscuity can be of functional importance in biology.National Institutes of Health (U.S.) (Award GM084181)National Institutes of Health (U.S.) (Award GM067681

    AVID: An integrative framework for discovering functional relationships among proteins

    Get PDF
    BACKGROUND: Determining the functions of uncharacterized proteins is one of the most pressing problems in the post-genomic era. Large scale protein-protein interaction assays, global mRNA expression analyses and systematic protein localization studies provide experimental information that can be used for this purpose. The data from such experiments contain many false positives and false negatives, but can be processed using computational methods to provide reliable information about protein-protein relationships and protein function. An outstanding and important goal is to predict detailed functional annotation for all uncharacterized proteins that is reliable enough to effectively guide experiments. RESULTS: We present AVID, a computational method that uses a multi-stage learning framework to integrate experimental results with sequence information, generating networks reflecting functional similarities among proteins. We illustrate use of the networks by making predictions of detailed Gene Ontology (GO) annotations in three categories: molecular function, biological process, and cellular component. Applied to the yeast Saccharomyces cerevisiae, AVID provides 37,451 pair-wise functional linkages between 4,191 proteins. These relationships are ~65–78% accurate, as assessed by cross-validation testing. Assignments of highly detailed functional descriptors to proteins, based on the networks, are estimated to be ~67% accurate for GO categories describing molecular function and cellular component and ~52% accurate for terms describing biological process. The predictions cover 1,490 proteins with no previous annotation in GO and also assign more detailed functions to many proteins annotated only with less descriptive terms. Predictions made by AVID are largely distinct from those made by other methods. Out of 37,451 predicted pair-wise relationships, the greatest number shared in common with another method is 3,413. CONCLUSION: AVID provides three networks reflecting functional associations among proteins. We use these networks to generate new, highly detailed functional predictions for roughly half of the yeast proteome that are reliable enough to drive targeted experimental investigations. The predictions suggest many specific, testable hypotheses. All of the data are available as downloadable files as well as through an interactive website at . Thus, AVID will be a valuable resource for experimental biologists

    Designing helical peptide inhibitors of protein–protein interactions

    Get PDF
    Short helical peptides combine characteristics of small molecules and large proteins and provide an exciting area of opportunity in protein design. A growing number of studies report novel helical peptide inhibitors of protein-protein interactions. New techniques have been developed for peptide design and for chemically stabilizing peptides in a helical conformation, which frequently improves protease resistance and cell permeability. We summarize advances in peptide crosslinking chemistry and give examples of peptide design studies targeting coiled-coil transcription factors, Bcl-2 family proteins, MDM2/MDMX, and HIV gp41, among other targets.National Institute of General Medical Sciences (U.S.) (Award GM067681)National Institute of General Medical Sciences (U.S.) (Award GM110048)National Institute of General Medical Sciences (U.S.) (Award GM084181

    Locating Herpesvirus Bcl-2 Homologs in the Specificity Landscape of Anti-Apoptotic Bcl-2 Proteins

    Get PDF
    Viral homologs of the anti-apoptotic Bcl-2 proteins are highly diverged from their mammalian counterparts, yet they perform overlapping functions by binding and inhibiting BH3 (Bcl-2 homology 3)-motif-containing proteins. We investigated the BH3 binding properties of the herpesvirus Bcl-2 homologs KSBcl-2, BHRF1, and M11, as they relate to those of the human Bcl-2 homologs Mcl-1, Bfl-1, Bcl-w, Bcl-xL, and Bcl-2. Analysis of the sequence and structure of the BH3 binding grooves showed that, despite low sequence identity, M11 has structural similarities to Bcl-xL, Bcl-2, and Bcl-w. BHRF1 and KSBcl-2 are more structurally similar to Mcl-1 than to the other human proteins. Binding to human BH3-like peptides showed that KSBcl-2 has similar specificity to Mcl-1, and BHRF1 has a restricted binding profile; M11 binding preferences are distinct from those of Bcl-xL, Bcl-2, and Bcl-w. Because KSBcl-2 and BHRF1 are from human herpesviruses associated with malignancies, we screened computationally designed BH3 peptide libraries using bacterial surface display to identify selective binders of KSBcl-2 or BHRF1. The resulting peptides bound to KSBcl-2 and BHRF1 in preference to Bfl-1, Bcl-w, Bcl-xL, and Bcl-2 but showed only modest specificity over Mcl-1. Rational mutagenesis increased specificity against Mcl-1, resulting in a peptide with a dissociation constant of 2.9 nM for binding to KSBcl-2 and > 1000-fold specificity over other Bcl-2 proteins, as well as a peptide with > 70-fold specificity for BHRF1. In addition to providing new insights into viral Bcl-2 binding specificity, this study will inform future work analyzing the interaction properties of homologous binding domains and designing specific protein interaction partners.National Institute of General Medical Sciences (U.S.) (R01GM110048)National Science Foundation (U.S.) (0821391

    Generating High-Accuracy Peptide-Binding Data in High Throughput with Yeast Surface Display and SORTCERY

    Get PDF
    Library methods are widely used to study protein-protein interactions, and high-throughput screening or selection followed by sequencing can identify a large number of peptide ligands for a protein target. In this chapter, we describe a procedure called "SORTCERY" that can rank the affinities of library members for a target with high accuracy. SORTCERY follows a three-step protocol. First, fluorescence-activated cell sorting (FACS) is used to sort a library of yeast-displayed peptide ligands according to their affinities for a target. Second, all sorted pools are deep sequenced. Third, the resulting data are analyzed to create a ranking. We demonstrate an application of SORTCERY to the problem of ranking peptide ligands for the anti-apoptotic regulator Bcl-xL.National Institute of General Medical Sciences (U.S.) (Award GM096466

    SORTCERY—A High–Throughput Method to Affinity Rank Peptide Ligands

    Get PDF
    Uncovering the relationships between peptide and protein sequences and binding properties is critical for successfully predicting, re-designing and inhibiting protein–protein interactions. Systematically collected data that link protein sequence to binding are valuable for elucidating determinants of protein interaction but are rare in the literature because such data are experimentally difficult to generate. Here we describe SORTCERY, a high-throughput method that we have used to rank hundreds of yeast-displayed peptides according to their affinities for a target interaction partner. The procedure involves fluorescence-activated cell sorting of a library, deep sequencing of sorted pools and downstream computational analysis. We have developed theoretical models and statistical tools that assist in planning these stages. We demonstrate SORTCERY's utility by ranking 1026 BH3 (Bcl-2 homology 3) peptides with respect to their affinities for the anti-apoptotic protein Bcl-x[subscript L]. Our results are in striking agreement with measured affinities for 19 individual peptides with dissociation constants ranging from 0.1 to 60 nM. High-resolution ranking can be used to improve our understanding of sequence–function relationships and to support the development of computational models for predicting and designing novel interactions.National Institutes of Health (U.S.) (Award GM096466)German Academic Scholarship Foundation (Grant RE 3111/1-1

    Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions

    Get PDF
    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology.National Institutes of Health (U.S.) (Award GM067681

    Predicting specificity in bZIP coiled-coil protein interactions

    Get PDF
    We present a method for predicting protein-protein interactions mediated by the coiled-coil motif. When tested on interactions between nearly all human and yeast bZIP proteins, our method identifies 70% of strong interactions while maintaining that 92% of predictions are correct. Furthermore, cross-validation testing shows that including the bZIP experimental data significantly improves performance. Our method can be used to predict bZIP interactions in other genomes and is a promising approach for predicting coiled-coil interactions more generally

    Genome-Wide Prediction and Validation of Peptides That Bind Human Prosurvival Bcl-2 Proteins

    Get PDF
    Programmed cell death is regulated by interactions between pro-apoptotic and prosurvival members of the Bcl-2 family. Pro-apoptotic family members contain a weakly conserved BH3 motif that can adopt an alpha-helical structure and bind to a groove on prosurvival partners Bcl-x[subscript L], Bcl-w, Bcl-2, Mcl-1 and Bfl-1. Peptides corresponding to roughly 13 reported BH3 motifs have been verified to bind in this manner. Due to their short lengths and low sequence conservation, BH3 motifs are not detected using standard sequence-based bioinformatics approaches. Thus, it is possible that many additional proteins harbor BH3-like sequences that can mediate interactions with the Bcl-2 family. In this work, we used structure-based and data-based Bcl-2 interaction models to find new BH3-like peptides in the human proteome. We used peptide SPOT arrays to test candidate peptides for interaction with one or more of the prosurvival proteins Bcl-x[subscript L], Bcl-w, Bcl-2, Mcl-1 and Bfl-1. For the 36 most promising array candidates, we quantified binding to all five human receptors using direct and competition binding assays in solution. All 36 peptides showed evidence of interaction with at least one prosurvival protein, and 22 peptides bound at least one prosurvival protein with a dissociation constant between 1 and 500 nM; many peptides had specificity profiles not previously observed. We also screened the full-length parent proteins of a subset of array-tested peptides for binding to Bcl-x[subscript L] and Mcl-1. Finally, we used the peptide binding data, in conjunction with previously reported interactions, to assess the affinity and specificity prediction performance of different models.National Institutes of Health (U.S.) (Award GM084181)National Science Foundation (U.S.) (Grant 0821391)American Cancer Society (Postdoctoral Fellowship PF-12-155-01-DMC
    • …
    corecore