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Abstract

Uncovering the relationships between peptide and protein sequences and binding properties is 

critical for successfully predicting, re-designing and inhibiting protein-protein interactions. 

Systematically collected data that link protein sequence to binding are valuable for elucidating 

determinants of protein interaction, but are rare in the literature because such data are 

experimentally difficult to generate. Here we describe SORTCERY, a high-throughput method 

that we have used to rank hundreds of yeast displayed peptides according to their affinities for a 

target interaction partner. The procedure involves fluorescence-activated cell sorting (FACS) of a 

library, deep sequencing of sorted pools, and downstream computational analysis. We have 

developed theoretical models and statistical tools that assist in planning these stages. We 

demonstrate SORTCERY’s utility by ranking 1026 BH3 peptides with respect to their affinities 

for the anti-apoptotic protein Bcl-xL. Our results are in striking agreement with measured affinities 

for 19 individual peptides with dissociation constants ranging from 0.1 to 60 nM. High-resolution 

ranking can be used to improve our understanding of sequence-function relationships, and to 

support the development of computational models for predicting and designing novel interactions.
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Introduction

Understanding the relationships between protein sequences and their functions is a 

fundamental objective of protein science. Our ability to map these relationships has 

improved with advances in technology. Until recently, the ability to decode information 

from experiments that characterize protein function was limited by the need to clone and/or 

individually sequence every gene of interest at relatively low throughput. Next-generation 
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sequencing has changed this, and a number of important publications describe techniques 

that combine phenotypic screening and deep sequencing to investigate how protein sequence 

influences structure, folding, binding or organism growth/fitness [1–10]. Araya and Fowler 

have written a good review of recent advances [11]. Generally, the experimental approach 

involves constructing a library of many different mutant variants of a protein of interest. The 

library is then screened/selected for some property or function. The retained library pool is 

sequenced, and features of sequences that are observed with high frequency are implicated 

as important for the relevant property. In this introduction, we discuss applications of this 

approach to the problem of determining protein interactions with a target.

Interaction systems that have been subjected to a screening-plus-sequencing approach 

include PDZ domain peptide ligands [4, 5], Pin WW domain peptide ligands [6], influenza 

haemaglutinnin inhibitors [7], LYN kinase interaction partners [8], computationally 

designed digoxigenin binders [9] and Bcl-2 type receptor/BH3 complexes [10]. Experiments 

varied in library size (~1,000 to ~ 600,000 members) as well as in the type of screening used 

to detect binding (phage display, yeast display, ribosome display, bacterial two-hybrid). 

These studies are exciting milestones that dramatically expand the amount of data available 

to describe protein interactions. Yet, it is important to consider what information the data 

from various interaction screens contain and how it can be used. A standard approach has 

been to quantify the enrichment of each sequence or point mutation among library members 

classified as binders, relative to the unselected library, and to use this as a proxy for affinity. 

This may be problematic, as it relies on adequate deep sequencing of the starting library and 

bias-free amplification of sequences throughout screening and sample preparation. In fact, 

Derda et al. found that the relative abundance of phage displayed peptides could be 

significantly skewed if phages were amplified after a selection step [12]. McLaughlin et al. 

have reported data that support an impressive correlation of enrichment scores with binding 

affinities [5], but the appropriateness and resolution of new methods for affinity 

determination is not well established.

Recently, Kinney et al. pioneered a detailed approach to the screen-and sequence scheme 

and applied it to measure protein-DNA interactions [13]. Adopting the expression level of 

GFP as an indicator of transcription factor binding strength, they employed fluorescence 

activated cell sorting (FACS) to sort a bacterial library of ~20000 mutant lacZ-promoters 

with different activities into pools and decoded these by deep sequencing. A maximum-

likelihood computational routine transformed the sequencing data into a position specific 

scoring matrix that described the DNA-binding affinity of the transcription factor. In a 

similar approach, Sharon et al. monitored the affinity of transcription factors for hundreds of 

mutant yeast promoters that were coupled to YFP and derived a ranking of transcription 

factor activities [14].

Sharon et al. and Kinney et al. employed multi-bin sorts that increased the resolution of their 

experiments (i.e. the ability to distinguish between two different dissociation constants or 

equivalent measures of affinity) and permitted the analysis of frequency distributions rather 

than the more difficult to interpret enrichment values. However, issues remain to be 

addressed. First, only the expression of fluorescent protein was monitored in the protein-

DNA binding studies, without accounting for variations in transcription factor levels that 
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impact reporter gene expression. Prior work supports the importance of a correction. Liang 

et al. developed a two-color FACS screen for RNA gene regulatory devices [15]. One 

fluorescence signal reported the device activity, the other was a measure of basic 

transcription levels. This setup dramatically increased the resolution of the sorting scheme in 

comparison to a one-color strategy. Similarly, Dutta et al. gauged the stability of protein 

mutants by fragment reconstitution and yeast display [16]. They observed the expression and 

display of a mutant fragment with one fluorescence signal and the binding of a 

complementary fragment with another signal. Their findings suggested a correlation 

between the stabilities of the protein mutants and the ratio of the two fluorescence signals. 

Chao et al. showed qualitatively that a mixture of two yeast-displayed antibodies with very 

similar affinities for a target can be enriched for the stronger binder by FACS when 

expression levels are taken into account. Second, Kinney et al. [13] and Sharon et al. [14] 

considered averages of their detailed experimental information during computational 

analyses. They calculated position specific scoring matrices and mean expression values, 

respectively. Cooperative effects and signal variance may limit the accuracy of models 

derived with such assumptions.

High-throughput characterization of protein interactions will be most useful if it can deliver 

accurate estimates of affinity or affinity rankings. For example, such estimates could enable 

the construction of more accurate predictive models or could guide the refinement of protein 

designs [7]. We present a protocol that uses a rigorous sorting strategy in combination with 

downstream computational processing that returns a precise affinity ranking of individual 

sequences. Taking advantage of yeast-surface display, in which a signal resulting from a 

peptide binding to a protein can be normalized by the expression level of that peptide, we 

developed a theoretical framework to derive the expected signals for binders of different 

affinities. Experimental sorting using FACS, plus library sequencing, yielded coarse-grained 

signal distributions for ~1000 peptide-displaying clones in a single experiment. 

Computational processing generated a global ranking of peptide affinities, and our 

theoretical model allowed a detailed statistical analysis of sources of error in the final 

results. Because existing methods are already capable of discerning strong from weak and 

non-binders, we have focused on discriminating tight binders within a 500-fold range of 

affinities (0.1 nM-60 nM). Accurate data in this regime may aid in the design of very strong 

binders that can be important therapeutic and diagnostic agents [17–19]. We conducted our 

study using a small library of about 1000 yeast displayed BH3 peptides that bind to Bcl-xL, a 

key regulator of apoptosis. High-affinity binders of Bcl-xL are of great interest due to their 

potential for diagnosing or surmounting apoptotic blockades in numerous cancers [20–22].

Results

Our high-throughput method called SORTCERY analyzes the binding of yeast displayed 

peptide ligands to a target molecule and returns a ranking for the affinities of all considered 

ligands. The multi-step procedure involves sorting a yeast displayed library into several 

bins, deep-sequencing all bins and analyzing the resulting data (see figure 1). Our optimized 

sorting strategy is based on a theoretical model relating two fluorescence signals to the 

peptide-target dissociation constant. The model establishes how to set cell-sorting gates or 

bins for an optimal separation of ligands of varying affinities. The post-sequencing data 

Reich et al. Page 3

J Mol Biol. Author manuscript; available in PMC 2016 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis involves constructing frequency distributions over bins, and then exhaustively 

comparing pairs of distributions. Finally, the pairwise comparisons are combined into a 

global ranking of affinities. We have tested the performance of SORTCERY on a yeast 

display library and shown that we can produce very accurate affinity rankings of peptide 

ligands. More specifically, we have investigated the interaction between mutant Bim and 

Puma BH3 peptides and the anti-apoptotic receptor Bcl-xL. Bcl-xL plays a critical role 

controlling cell death by interacting with the helical Bcl-2 homology 3 (BH3) regions of 

many pro-apoptotic proteins. We monitored the interaction of yeast-surface displayed BH3 

peptides with soluble Bcl-xL. Tags on the BH3 variants and the Bcl-xL protein were used to 

quantify expression and binding levels with fluorescently labeled antibodies, similar to 

Dutta et al. [23]. A more complete description of the experimental setup is given in the 

Methods section.

Theoretical model relating FACS profiles to binding

In this section we present a theoretical model that relates the dissociation constant of a 

protein-peptide complex to observed fluorescence signals for expression and binding in a 

flow cytometric measurement. We define a one-dimensional “axis of affinity” in two-

dimensional fluorescence signal space that facilitates accurate discrimination between yeast 

displayed peptides of different affinities. Based on this concept, we present a strategy for 

sorting peptide ligands according to their affinities for a target. We also provide data for 

individual BH3 clones that support the predictions of our theory.

Results of the theoretical model

We derived our model with the following assumptions: First, binding occurs as a two-state 

process; i.e. yeast displayed ligands exist either in a heterodimer complex or in the unbound 

state, there are no intermediate stages. Second, the solution of target molecules is not 

depleted due to binding, i.e. the concentration of unbound target is approximately equal to 

the total target concentration. Note that yeast cells were incubated in sufficiently large 

volumes of Bcl-xL solution during experiments to ensure this condition was satisfied. Third, 

fluorescence signals are linearly related to the concentration of yeast-displayed ligand and 

bound target, respectively. Fourth, background fluorescence is small in comparison to 

binding and expression signals. This should generally hold true, since FACS machines 

record signals over several orders of magnitude. Fifth, the equilibrium between free and 

bound ligand is not disturbed before the measurement. Although we have derived the 

theoretical model under this assumption, SORTCERY may provide valuable data even when 

it is not strictly satisfied (see Expanded View).

Our derivation starts with four equations describing the mass action law for complex 

dissociation (equation 1), the conservation of ligand molecules (equation 2), and the 

relations between fluorescence signals and corresponding molecular concentrations 

(equations 3, 4).

(1)
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(2)

(3)

(4)

Here [target], [ligand], [complex] and [ligand]total signify the concentrations of free target, 

free ligand, target-ligand complex and total ligand molecules, respectively. KD is the 

dissociation constant of the target-ligand complex. Fe is the fluorescence signal for ligand 

expression, Fb is the fluorescence signal for target binding. Fa signifies autofluorescence 

and fluorescence from non-specific binding. Combining equations 1 to 4, and considering 

the logarithmic form of the expression, because FACS data are generally displayed this way, 

yields:

(5)

The constant c arises from the proportionality constants ce and cb and depends on 

experimental parameters such as fluorescence yields and PMT voltages of the FACS 

machine. If the contribution of Fa to the binding signal is small eq. 5 simplifies to

(6)

This mathematical model predicts several features for FACS profiles of individual peptide 

ligands, some of which are illustrated in figure 2. First, at a given target concentration, the 

theoretical, idealized FACS profile (log(Fb) vs. log(Fe) signal curve) is a line with a slope of 

1. Second, a change in affinity (KD) at constant target concentration shifts the line along a 

perpendicular axis; i.e. ligands of different affinities exhibit different y-intercepts, but the 

same slope. Third, a forbidden area exists where no well-behaved FACS profiles are 

observed. This area corresponds to binding of target in excess of displayed ligand. Fourth, at 

high target concentrations, FACS profiles converge at the boundary of the forbidden region, 

and the resolution between ligands with different affinities becomes poor. This trend is 

illustrated in figure 2C (for ligands with KD = 0.4 and 4 nM). We also note that, at too low a 

target concentration, the binding signals of FACS profiles fall below a threshold where 

equation 6 no longer applies (figure 2A for 40 and 400 nM ligands). Proper choice of target 

concentration is thus important for optimally resolving different KD intervals.

The fact that FACS profiles are predicted to be linear and exhibit parallel shifts to each other 

is of special interest. It permits the definition of an “axis of affinity”. This axis has the 

orientation of the orange arrows in figure 2. Projection of a theoretical FACS profile onto 

this axis results in a single point and such a “coordinate of affinity” is directly related to the 
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binding strength of a ligand. Hence, different ligands can be directly compared in this one-

dimensional coordinate system, rather than dealing with the more complicated two-

dimensional system of fluorescence signals. The coordinate of affinity, a, can be expressed 

in terms of the binding and expression signals:

(7)

It is instructive to consider the dissociation constant as a function of the coordinate of 

affinity:

(8)

According to this expression, an infinitely tight binder (KD = 0) would have a coordinate of 

affinity of . Ligands with ever larger KDs are found at ever smaller values of a. 

Hence the relevant range of the axis of affinity is . The forbidden region 

comprises the interval . The free energy of dissociation, ΔG, is related to the 

coordinate of affinity via

(9)

There are two important regimes. When  then . In this 

regime ΔG asymptotically goes to ∞ and even minute changes in a lead to large changes in 

ΔG (see supplemental figure 1). On the other hand, when  then 

 and

(10)

Note that it is possible to shift binding free energies into the better resolved linear region by 

adjusting the target concentration accordingly.

Testing the validity of the theoretical model

We tested three features of the theoretical model by recording FACS profiles for Bcl-xL 

binding of individual yeast displayed BH3 peptides. First, we considered the expected shape 

and orientation of FACS profiles. Experimental FACS profiles will not be infinitesimally 

narrow lines, due to measurement error. However, we expected elongated FACS profiles 

with a major principal component with a slope of 1. Second, as [target] → ∞, eq. 6 

Reich et al. Page 6

J Mol Biol. Author manuscript; available in PMC 2016 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



becomes log(Fb) = log(Fe)−log(c). Hence, at high Bcl-xL concentrations, binding will 

saturate and all BH3 clones should exhibit FACS profiles with very similar coordinates of 

affinity. Third, our model predicts the relationship between the dissociation constant and the 

coordinate of affinity. Rearrangement of equation 8 shows that log  and a 

should be linearly correlated with a slope of .

We investigated whether FACS profiles of BH3 peptides exhibited the predicted 

characteristics. We found that FACS profile shapes were sensitive to growth conditions, but, 

when these were optimized, we could robustly obtain experimental data in good agreement 

with the theoretical predictions (see Methods). BH3-displaying clones that were incubated 

with either 1 nM or 500 nM Bcl-xL had elongated profiles (figures 3 A and B) and 

autofluorescence/non-specific binding was relatively low (compare the binding-signal for 

the non-expressing population, at lower left, to the expressing population). We recorded the 

FACS profiles for a number of clones in duplicate on twelve separate days, conducting a 

total of 24 measurements on each. At 1 nM Bcl-xL, all profiles exhibited a first principal 

component with a slope close to 1 (figure 3A). This was true even in cases where not all 

recorded signals were much stronger than the background fluorescence (lower right panel in 

figure 3A), which violates one of our assumptions in the derivation of equation 6. We 

observed the same pattern for other Bcl-2 family proteins binding to BH3 peptides (see 

supplemental figure 2), indicating the possibility of general applicability. We were also able 

to verify our second prediction: FACS profiles for clones of different affinities 

superimposed at 500 nM Bcl − xL (figure 3B). Our test of the third prediction involved a 

linear fit of log  vs. a for 11 individual BH3 clones. KD values were 

determined by titrating Bcl-xL and monitoring the binding signal (see Methods). The linear 

fit yielded a slope of −1.19, with 95% confidence limits of [−1.41 , −0.96]. The R2 value 

was 0.94 (p-value < 10−6). When we constrained the slope to  we obtained an R2 value 

of 0.93. Both constrained and unconstrained fits are shown in figure 3C. The data show a 

strong linear correlation, even though our estimate of the coordinates of affinity was 

relatively crude (see Methods). The expected slope of  lies just beyond the 95% 

confidence limit of the best-fit slope. If this deviation did not arise from experimental noise, 

but reflects a true discrepancy between experiment and theory, then our model predicts a 

somewhat stronger change of KD with a than is actually the case and thus underestimates the 

maximum possible resolution. However, the good linear fit indicates that the overall relation 

between KD and a is well captured. In summary, all measurements of individual BH3 clones 

supported crucial features of the theoretical model.

Theory based strategy for sorting

Our theoretical model can be used to guide the selection of FACS gates for sorting displayed 

ligands according to their affinity for a target. The position, orientation and size of a gate are 

determined by the gate’s delimitations. Our model predicts that an optimal gate delimitation 

should include two boundaries perpendicular to the axis of affinity, so that the gate will 

exclusively collect ligands in a specific affinity regime (see figure 3D and red lines in 

supplemental figure 3).
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The width of the gates along the axis of affinity impacts the resolution that is attainable. Our 

model makes predictions about the relation of dissociation free energy to the coordinate of 

affinity (see equation 9) and can thereby guide user choices. In this study, our emphasis was 

on discriminating ligands over a range of dissociation free energies. Because dissociation 

free energy is in first approximation a linear function of the coordinate of affinity (equation 

10), we decided to use gates of equal width. The approximation only breaks down for 

extremely tight binders, and good resolution in this regime would require ever narrower 

gates (see supplemental figure 1). The cost to benefit ratio to attain better resolution for this 

small interval on the axis of affinity appears rather high.

A user should choose gates with the help of a few standards. Converting FACS profiles into 

densities over the axis of affinity (see Methods), the user can determine the interval on the 

axis he/she wants to operate on. For example, figure 3D shows four standards from our 

experiment that span affinities of ~ 0.1 nM to 60 nM and define the signal space of interest. 

The number of gates to be placed on this interval depends on the required resolution and 

feasibility in cost and time. A user can gauge the resolution by referring to the standards. 

Supplmenetal figure 4 shows probabilities to identify the stronger vs. weaker binder in 

pairwise comparisons of 11 standards in a three- vs. a twelve-gate setup. The twelve-gate 

setup shows significantly better performance, although the three-gate setup can also yield 

valuable information.

Post deep-sequencing data analysis Procedure for generating a global rank order of 
peptide ligand affinities

We developed a three-step computational protocol that derives a global affinity ranking of 

peptides by analyzing deep-sequencing data for samples from our sorting scheme. First, we 

constructed frequency distributions over the gates for each observed BH3 sequence, 

generating coarse-grained distributions over the axis of affinity. Second, for every pair of 

BH3 peptides, A and B, we calculated the probability that A is a better binder than B. In our 

scheme, this corresponds to the probability that A will be observed at a larger coordinate of 

affinity than B. To evaluate this, we computed the normalized frequency fhX with which a 

peptide X was observed in gate h. This frequency can be regarded as the empirical 

probability of observing peptide X in gate h. Then the probability that peptide A hits gate i 

and peptide B hits a gate that corresponds to smaller coordinates of affinity than i is:

(11)

Hence the probability that A is the stronger binder can be obtained by summing over all 

possible gates i:

(12)

We calculated all probabilities for all possible combinations of peptides and stronger binders 

using equation 12, i.e. p(A > B) and p(B > A) for all possible combinations of A and B. 
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Third, we derived a global ranking of affinities from the calculated pairwise probabilities. 

The set of pairwise probabilities corresponds to a directed graph with weighted edges. Each 

vertex represents a BH3 peptide and the weight of an edge leading from vertex A to vertex B 

is the probability that peptide A binds with higher affinity than peptide B. The linear 

subgraph with the maximum product of edge weights that does not include any contradictory 

orderings of affinities provides the global ranking. In graph theoretical terms this solution 

would be equivalent to finding the minimum feedback arc set in a tournament. A simple yet 

effective approximate algorithm for this task has been described in [24].

Affinity ranking of 1026 BH3 peptides with SORTCERY

We used SORTCERY to sort and rank a library composed of Bim and Puma BH3 peptide 

mutants (see Methods). The library consisted of high-affinity ligands for Bcl-xL. The 

dynamic range of our experiment was about 500-fold, spanning a KD interval from ~0.1 nM 

to ~60 nM. Cell sorting was carried out according to the scheme described above and in the 

methods section. We deep-sequenced all sorted pools and analyzed the data for 1,026 unique 

sequences. We gauged the quality of the data according to copy numbers for each unique 

BH3 sequence and widths for the corresponding frequency distributions (see Methods). 

supplemental figure 5 shows how both measures were distributed in our data set, and 

supplemental figure 6 shows representative frequency distributions. About 75% of all 

sequences had a copy number > 1, 100 and a distribution width narrower than that shown in 

supplemental figure 6C. The final result of our data analysis was a global rank order of all 

1026 observed BH3 sequences with respect to their binding strengths. We bootstrapped the 

deep-sequencing data and recalculated the global ranking to gauge uncertainties in our 

results. The average deviation of a BH3 sequence from its original rank was ≤ 23.5 in 95% 

of all bootstrap samples. This is a shift of < 2.3% of the total ranking.

We tested the accuracy of the global ranking for a subset of 19 BH3 peptides. These 

peptides were chosen to reflect the variety among sequences in the library as well as 

differences in the quality of the observed data (see table 1). We measured the dissociation 

constants of yeast displayed sequences by titrating cells with increasing concentrations of 

Bcl-xL and monitoring binding by flow cytometric analysis (supplemental figure 7). The 

relation between measured dissociation constants and our predicted ranking of affinities is 

shown in figure 4A. The predicted ranking shows outstanding agreement with individual 

measurements within experimental error (on KD values) and 95% bootstrap confidence 

intervals (on ranks).

To judge the reproducibility of our protocol, we repeated the SORTCERY experiment 

(including sorting, deep sequencing and data analysis) and re-determined the ranking for the 

19 clones. Because the clone with rank 12 in the original experiment (table 1, figure 4) 

showed very low deep sequencing coverage in the repeat experiment, we relaxed our quality 

criteria for coverage so that this clone could be included in the data analysis (see Methods). 

This led to a data set of 5518 unique sequences. Despite the larger number of sequences, and 

possibly worse statistics due to the low copy number of many sequences, SORTCERY again 

ranked the 19 chosen clones in a very similar fashion (supplemental figure 8). We also 

compared the ranking order of all sequences common to the original and the repeat data sets. 
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These 973 sequences were ranked very similarly in both analyses (supplemental figure 9): 

the average difference in ranks was ~69, or ~7% of the size of the total subset.

In both data sets we observed the largest bootstrap uncertainties in ranks for strong binders. 

These uncertainties can be explained by sampling noise during cell sorting (see Error 

Analysis in the Expanded View). In fact, we observed uncertainties exactly where our 

theoretical model predicted resolution to decline (supplemental figure 1). The least 

accurately ranked sequences in the original data set (at ranks 7 and 12 in figure 4A) were 

associated with no bootstrap uncertainty in rank. The deviation from their “true” rank, 

therefore, must have originated from bias rather than sampling noise. The least accurately 

ranked sequence in the repeat SORTCERY experiment (rank 10 in the repeat; rank 12 in the 

original; rank based on KD was 17) showed only small bootstrap error, indicating that in this 

data set ranking of this sequence also was biased.

In our error analysis in the Expanded View, we show that bias leading to ranking errors most 

likely originated from the deep sequencing step. Quantitative deep sequencing analyses are 

known to be affected by bias [25, 26]. Our overall ranking was not dramatically affected by 

deep sequencing bias, but a correction algorithm for peptide libraries could be beneficial. 

Note that both outlier sequences in the original data set exhibited a low-value quality 

parameter (rank 7 had a particularly broad distribution and rank 12 a low copy number, see 

table 1). The quality parameters could serve as a warning of possible bias.

Yeast display experiments are often performed to identify peptide ligands for applications in 

solution. To check whether the SORTCERY ranking for displayed ligands accurately 

reflected the affinities of soluble peptides, we chose 6 of the 19 investigated BH3 peptides 

with KD values of different orders of magnitude. We measured the affinities for 28-residue 

peptides binding to Bcl-xL by competitive fluorescence polarization experiments. Affinity 

rank orders for these six peptides were identical as assessed by yeast display and 

fluorescence polarization, and measured KD values agreed within the margins of error in 4 

out of 6 examples (supplemental figures 10, 11 and table 1).

Sequence features in the sorted affinity regimes

SORTCERY yields detailed, high resolution information about peptide binding that can 

potentially be linked to sequence features. We first created sequence logos from all the 

unique Bim and Puma sequences in our ranking (see figure 5). The 310 observed Bim 

mutant sequences show a highly conserved aspartate in position 3f, consistent with strong 

conservation of this residue in natural and engineered BH3 peptides. Among the 716 Puma 

mutant sequences, however, we detected significant sequence variation at position 3f. We 

examined Puma sequence features in different affinity regimes, dividing our data into four 

bins: peptides between ranks 1 and 185 (KD values ≲ 1 nM), peptides between ranks 186 

and 594 (1 nM ≲ KD ≲ 10 nM), peptides between ranks 595 and 908 (10 nM ≲ KD ≲ 40 

nM) and peptides between ranks 909 and 1026 (KD ≳ 40 nM). Sequence logos for all four 

bins are shown in figure 5 and show that Asp at 3f is highly conserved among very strong 

binders (KD ≲ 1 nM), with only three other possible alternatives. In lower affinity bins, 

sequence variety increases at 3f. A similar trend exists for Leu in position 3a. We observed 

more subtle changes with KD in the residue composition of the other four positions.
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Comparison to one-gate experiment

Engineering binding peptides using standard library selection methods involves enrichment 

steps. Deep sequencing data from an enriched pool can be analyzed by calculating 

enrichment values for each unique sequence [6, 8], or positional enrichment values [5–9]. 

PSSMs built from residue frequencies in enriched populations have also been employed 

[10]. All of these scores have been assumed to reflect affinities. For comparison to other 

methods, we carried out a series of single-gate FACS experiments, mimicking common 

yeast-display screens [23, 27]. We chose either the highest-affinity gate or combined two to 

twelve of the highest-affinity gates from our SORTCERY scheme (supplemental figure 3). 

We deep sequenced each sorted pool and determined scores for the 19 experimentally 

characterized clones in table 1 according to sequence enrichment, positional enrichment, or 

a PSSM (see Methods). We then ranked the 19 clones and compared the ranking to the 

ranking based on directly measured affinities (in analogy to our comparison of the 

SORTCERY ranking to the experimental ranking in figure 4B). Plots of standard deviations 

between these two rankings vs. the chosen number of combined gates are shown in figures 

6A, C and E. For all three scoring methods, the number of chosen gates significantly 

influenced the quality of the derived ranking, indicating that a successful experiment may 

require prior information on how to set the gate. Interestingly, the PSSM method exhibited 

by far the best ranking and the least variation with the number of chosen gates. Yet, even the 

lowest observed standard deviation (4.2) was two-fold higher than the standard deviation 

observed for SORTCERY (1.9). We investigated the performance for the best gating choice 

more closely for each scoring method. Figure 6 B, D and F shows plots of the 

experimentally determined KD values vs. the ranking indices that resulted from each scoring 

method. We observed a clear trend with the PSSM method, especially when Bim and Puma 

variants were considered separately. Nevertheless, SORTCERY’s accuracy is much higher. 

There are several examples where the PSSM approach cannot resolve KD values with an 

order of magnitude difference (figure 6F). The other two scoring methods were less 

successful at predicting relative affinities.

Discussion

Biophysical characterization of the binding of proteins and their mutational variants is 

typically conducted using low-throughput one-at-a-time analyses. Higher-throughput studies 

can provide qualitative information, and methods for obtaining higher resolution are being 

explored [11, 13, 14]. In this study we ranked 1026 BH3 sequences based on affinity for Bcl 

− xL over a dynamic range of dissociation constants from ~0.1 nM to ~60 nM in a single 

experiment. We gauged the effect of combinations of mutations in different sequence 

contexts (Bim and Puma based peptides), demonstrating that SORTCERY can accurately 

operate in a diverse sequence space. Indeed, SORTCERY’s resolution in this application 

was equivalent to the resolution obtained by individual measurements, and could in many 

cases distinguish two- to three-fold differences in the dissociation constants of peptide 

ligands. Individual measurements for a few members of the ranking can therefore provide 

very accurate estimates of the dissociation constants of all observed sequences. Alternative 

analyses applied to this problem showed relatively poor performance on the challenging 

ranking task.
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Mutational analysis is a critical tool for understanding and re-engineering protein 

interactions. Over the past several decades, landmark alanine-scanning studies have led to an 

appreciation of the important roles of hot-spot residues in protein interfaces [28], and other 

mutational studies have provided insights into interfacial sequence tolerance, structural 

modularity, and positional site independence vs. cooperativity in binding [29, 30]. Such 

studies can now be scaled up dramatically using SORTCERY, without significant loss of 

resolution. The potential to probe combinations of mutations is particularly exciting in this 

respect. In the realm of engineering, introducing mutations to modulate stability, affinity or 

binding specificity is critical for industrial efforts in antibody design and affinity maturation, 

and is important for the exploration of alternative scaffolds. The use of SORTCERY to 

categorize large sets of mutations, and combinations of mutations, can accelerate designs 

efforts. Finally, we are especially excited about the potential of SORTCERY to provide 

semi-quantitative data for computational model building. Many groups have developed 

computational methods to predict the influence of mutations on protein binding [31]. But 

testing these methods relies on the availability of large experimental data sets, which so far 

are scarce. The data we report here provide a challenging prediction benchmark, and 

SORTCERY can generate many other tests of this variety. Data from SORTCERY 

experiments can also be incorporated directly into models, similar to the way experimental 

binding data have been used to build models of coiled-coil interactions and PDZ-ligand 

binding in the past [32, 33].

It should be possible to expand SORTCERY’s potential in several ways. For example, our 

theory predicts that changing the target molecule concentration will make it possible to 

collect data from different KD regimes. A combination of rankings could then yield 

information over a larger dynamic range with high resolution. Processing more cells in a 

SORTCERY experiment would make it possible to rank larger libraries. Finally, 

SORTCERY may have potential to identify highly specific binders. This could be achieved 

by creating several rankings for one library, each corresponding to the binding of a different 

target molecule.

Systems with high dissociation rates may pose a challenge for SORTCERY. Our 

experimental protocol was optimized to minimize target dissociation before sorting (see 

Methods). But very fast off-rates will lead to shifts on the axis of affinity. In such scenarios 

SORTCERY could still be a valuable procedure if dissociation rates correlate sufficiently 

with equilibrium constants. This would lead to consistent shifts in the binding signal and 

consistent shifts on the axis of affinity (as described in the supplemental material). Fast off-

rates uncorrelated with equilibrium constants could cause SORTCERY to fail, as ligands 

with similar affinities would be assigned very different coordinates of affinity.

Although our study focused on the affinities of yeast displayed peptide ligands, 

SORTCERY’s potential applicability is more general. E.g. Chao et al. observed FACS 

profiles of yeast displayed antibodies that could be described by our theory and 

demonstrated that expression levels matter for optimal enrichment of high affinity antibodies 

by FACS [34]. SORTCERY could be a powerful tool to gather data for antibody design and 

engineering. Furthermore, in vivo gene regulation could be monitored with similar models 

as used here for binding profiles. In fact, Liang et al. reported a two-color screening method 
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for RNA regulatory devices that exploits the linear relationship between a fluorescence 

signal for gene expression and a fluorescence signal for baseline transcription [15]. Liang et 

al. found this relationship empirically, without the formulation of any theoretical foundation. 

However, a model similar to the one derived here would describe their experiment. A 

variant of our model could also help gauge the stability of protein mutants. Dutta et al. 

developed a method that probes protein stability by fragment reconstitution and yeast 

display [16]. They distinguished between different stabilities with empirically determined, 

diagonally shaped gates similar to those observed in this study. SORTCERY-style 

procedures could, therefore, significantly increase our knowledge of the sequence-function 

relationships of proteins, peptides, RNA and DNA. This treasure trove of data may 

ultimately lead to better computational models and advances in protein design, 

biotechnology, synthetic biology and pharmaceutical applications.

Materials and methods

Yeast display setup

The yeast-surface display experiment was similar to that described by Dutta et al. and used 

many of the same reagents [23]. Briefly, we displayed BH3-peptides fused to the C-terminus 

of the Aga2 yeast cell-surface protein. The construct included HA and FLAG tags N-and C-

terminal to the BH3 peptide, respectively. All BH3 peptides were variants of either the Bim 

or Puma human BH3 sequences. The Bim wild-type sequence consisted of the 31 residues

RPEIWIAQELRRIGDEFNAYYARRVFLNNYQ

and the Puma wild-type sequence comprised the 33 residues

GEEEQWAREIGAQLRRMADDLNAQYERRRQEEQ.

Mutations were introduced in positions 2d, 3a, 3b, 3d, 3f and 4a of the BH3 helix, which are 

indicated in bold text above (consult [23] for notation). In all experiments, we incubated 

cells with soluble Myc-tagged Bcl-xL in BSS (50 mM Tris, 100 mM NaCl, pH 8.0, plus 1 

mg/ml BSA to block Bcl-xL from non-specific binding) at room temperature for 2 h (2·106 

cells in 1.4 ml volume to meet the assumptions of the theoretical model). Cells were washed 

twice with BSS before the application of antibodies. We incubated the cells with a mixture 

of primary mouse anti-HA antibodies to detect peptide expression and primary rabbit anti-

Myc antibodies to detect Bcl − xL binding (Roche, catalog # 11583816001 and Sigma, 

catalog # P9537). The incubation was carried out for 15 min at 4 °C (to minimize 

dissociation), applying 10 µl of a 1:100 dilution per 106 cells. After a second wash step, we 

incubated the cells with a secondary APC-labeled anti-mouse and a secondary PE-labeled 

anti-rabbit antibody (BD Biosciences, catalog # 550826 and Sigma, catalog # P9537). 

Dilutions were 1:40 for the anti-mouse and 1:100 for the anti-rabbit antibody. All other 

incubation parameters were the same as for the incubation with the primary antibodies. No 

significant dissociation was observed once sample preparation was complete. FACS profiles 

remained the same even when samples were remeasured after several hours. We suspect that 

the antibodies crosslink bound target across the cell surface and thus prevent further 

dissociation.
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Cell growth was rigorously monitored. First, we grew cells in selective media containing 

glucose (SD+CAA) for 8h at 30 °C from a starting OD600nm of 0.05 and then diluted to an 

OD600nm of 0.005 and grew to an OD600nm of 0.1 to 0.4. Induction of BH3 expression was 

carried out in selective media with galactose (SG+CAA) at 30°C from a starting OD600nm of 

0.025 until an OD600nm of 0.2 to 0.5 was reached.

Testing of model predictions

We collected signals from about 10000 cells for each FACS profile. To determine 

coordinates of affinity for individual BH3 peptides, we transformed FACS profiles into two-

dimensional probability densities with an R-based kernel density routine [35] (Hpi routine 

with options pilot = “samse“ and pre = “sphere“). Integration perpendicular to the axis of 

affinity gave probability densities over this axis for each BH3 peptide. We considered the 

position of the global maximum of density as the corresponding peptide’s coordinate of 

affinity. Although densities are not fully symmetric and may show local maxima (see figure 

3D), we considered this a good approximate measure. We subsequently applied a linear fit 

to the data set of  pairs. KD values for individual clones were 

determined as described in [23]. The fit involved the minimization of absolute residuals 

rather than the more commonly used square residuals. Least-square residuals may result in a 

somewhat better R2 goodness of fit value, but does this by favoring extreme points. Apart 

from checking for linear correlation, we also desired a robust estimate of the slope. Hence, 

least absolute residuals were the better choice. Plots of experimental single clone FACS 

profiles were generated with the help of the Matlab routine dscatter as described in [36].

Gate setting

Gate delimitations perpendicular to the axis of affinity were chosen guided by the model 

theory, as discussed in the text (red lines in supplemental figure 3). To define other borders, 

we considered the FACS profiles from expressing but non-binding cells, which are not 

described by our theory but experimentally partially overlap the binding population. We 

defined gate borders in the low fluorescence region such that non- and weak binders could 

enter low affinity gates only, and non-expressing cells were excluded (green lines in 

supplemental figure 3). In the high fluorescence region, we excluded cells with maximum 

fluorescence/maximum channel numbers because the affinities of their displayed ligands 

could not be determined (blue lines in supplemental figure 3). Using experimentally 

recorded probability densities of individual BH3 peptides over the axis of affinity (e.g. 

profiles in figure 3A) we determined that 12 gates with the width and placement shown in 

supplemental figure 3 should give high resolution.

Sorting and sequencing a high-affinity BH3 library

We constructed a library of strong BH3 binders from existing Bim- and Puma- libraries in 

our laboratory. The Bim library is described in [23]. The Puma library contained the same 

variable regions and the same sequence variety. We started with a Bim library pool that had 

previously been sorted four times for binding to 1 µM Bcl-xL and a Puma library pool that 

had previously been sorted three times for binding to 1 µM Bcl-xL. Both library pools were 
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sorted at 1 nM Bcl −xL according to our twelve-gate scheme. Equal numbers of cells from all 

gates and pools were combined (apart from samples of the three highest affinity gates, which 

were added at half the number of cells only due to a much lower sorting yield). About 

10,000 cells from this mixture were grown to comprise the high-affinity library.

We sorted > 100,000 cells from the high-affinity library into each of the 12 established gates 

with a BD FACS Aria cell sorter and the BD FACS Diva software. The FACS Aria can sort 

four samples at the same time and we sorted into gates in ascending order. Cells were 

subsequently prepared for multiplexed deep-sequencing. The protocol we followed has been 

described in great detail in [37]. We assigned two different five basepair barcodes to each 

gate and performed a paired-end deep sequencing run on an Illumina GaII with forward and 

reverse reads yielding 80 base long partially overlapping sequences. For the one gate 

experiment we sorted between 200,000 and 1,000,000 cells into each combination of gates.

Data analysis

For subsequent analysis, we only considered those deep sequencing reads with a Phred 

confidence probability of > 0.95 for the combined variable positions in the sequence. 

8720221 sequences satisfied this constraint. We proceeded to analyze all unique BH3 

sequences for which we observed at least 750 copies. Copy numbers varied widely, 

indicating that although all BH3 clones likely were strong binders, their enrichment did not 

depend on their affinity for Bcl −xL alone (see supplemental figure 5A). After applying these 

criteria, we retained data for 1026 BH3 clones.

We constructed a frequency distribution over the 12 sorting gates for each BH3 clone from 

the deep-sequencing information. Because the FACS Aria cell sorter can only sort 4 samples 

at a time, we had to sample sets of gates sequentially. Therefore, counting the copy numbers 

of a specific BH3 sequence in each deep sequencing sample will not result in the frequency 

distribution of this sequence over the 12 gates. This distribution may be determined as 

follows. The relative frequency for BH3 clone j to hit gate i, fij, is

(13)

Here aij is the fraction of the sequence of BH3 clone j in the deep sequencing sample 

corresponding to gate i. zy is the relative frequency with which cells of the library would hit 

gate y if all gates could be sorted into at the same time. This information can be recorded 

during a FACS experiment without having to sort into every individual gate at the same 

time.

Despite our conservative gating scheme (see supplemental figure 3), preliminary 

experiments indicated a small probability for weak binders to enter high affinity gates. This 

could potentially lead to a diminished resolution in the final affinity ranking. We therefore 

set all frequencies < 0.05 in all distributions to 0 and renormalized. The quality of the final 

distributions was determined by their distance from the simplex center (see below and 

supplemental figure 5B). We subsequently used equation 12 to calculate probabilities for the 

stronger binder of all possible pairs of BH3 peptides and constructed a graph as described in 
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the main text. We then employed a computational routine to determine the global affinity 

ranking for all peptides. The routine generated 1,000 candidate rankings with the algorithm 

described in [24] and retained the highest-scoring ranking (maximum product of edge 

weights of corresponding sub-graph) for further improvement. The improvement involved 

successive attempts to insert each individual peptide into each possible position in the 

retained ranking. We ran through this procedure 2,000 times, alternately starting with the 

highest and the lowest ranking peptide and proceeding to the lowest and highest ranking 

peptide, respectively. Finally, we conducted 10,000 Monte-Carlo steps. In each step an 

attempt was made to exchange the ranks of two different peptides. To determine the 

uncertainty in our results, we drew bootstrap samples from the high quality sequences in 

each deep sequencing sample and reran the whole subsequent analysis. Overall, we 

performed 10,000 such bootstrap repetitions resulting in the error bars in figure 4A.

Repeat Experiment

Library sorting and sequencing were performed as in the first experiment. In our repeat 

experiment, we obtained 105454910 high-quality reads from a HiSeq deep sequencing run. 

Most of the 19 individual test sequences from the original experiment had reasonably high 

copy numbers in this new data set. However, the sequence with original rank 12 (table 1, 

figure 4) had 467 reads. Although this is 4.4 · 10−6 of the total number of reads 

(corresponding to less than 10 sorted cells), and thus may contain insufficient statistical 

information, we decided to lower our cut-off on copy number to 467 so that this sequence 

could be included. A total of 5518 sequences met this criterion and were processed to 

generate a final ranking.

Analysis of one-gate data

Sorted pools from the one-gate experiment were deep sequenced and the observed 

sequences were scored in three different ways. First, we calculated enrichment values for 

each sequence, . Here f and fn signify the relative frequency in the sorted and naive library 

pools, respectively. Second, we determined a positional enrichment value ∏i , with index 

i running over all positions of the sequence and fi and fni indicating the relative frequency of 

the residue in position i in the sorted and naive library pool. Third, we built a PSSM from 

the sorted pool where the score is given by ∏i fi. We drew 10,000 bootstrap samples from 

the deep sequencing data on the sorted pools and the naive library and calculated the 

aforementioned scores each time to determine uncertainties in the rankings shown in figures 

6 B, D and F.

Gauging the widths of frequency distributions

A parameter that expresses the spread of a distribution over the FACS gates can be very 

helpful when gauging the distribution’s quality or simulating a SORTCERY experiment (see 

Error Analysis in Supplemental Material). We noted that each normalized distribution over 

the 12 gates can be considered as a point in 12-dimensional space. Due to the normalization, 

points will be constrained to a so-called 11-simplex, a specific hypervolume in 12-

dimensional space. The worst-case scenario (uniform distribution) corresponds to the center 
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of this simplex. Thus the more distant a point lies from the simplex center the less uniform 

its corresponding distribution and the more accurate the resulting ranking. Although our 

metric assigns equal values to a distribution with two neighboring peaks and a distribution 

with two widely separated peaks, we observed that most experimental distributions 

exhibited one large cluster of frequencies only (see supplemental figure 6 for representative 

data). Hence, our metric is a good gauge for quality in practice and we generally refer to it 

a ”distribution width“ in the main text.

Titration of individual clones

We picked the 19 sequences listed in table 1 from the global ranking of 1026 BH3-peptides 

and cloned them into our yeast-display vector. We titrated each individual clone with Bcl − 

xL and recorded binding signals with a flow cytometry analyzer in four independent 

experiments. The KD values of the titration curves were determined as described in [23]. 

Example curves are shown in supplemental figure 7.

We also synthesized 6 of the 19 sequences as 28-residue long soluble peptides, 

corresponding to the region

RPEIWIAQELRRIGDEFNAYYARRVFLN

in the Bim context and the region

EEQWAREIGAQLRRMADDLNAQYERRRQ

in the Puma context. N- and C-termini were acetylated and amidated, respectively. We 

conducted four independent competition fluorescence polarization experiments with each of 

these peptides. Peptides were incubated with 50 nM Bcl −xL in the presence of 10 nM 

fluorescein labeled competitor with either 6 nM or 40 nM affinity for Bcl − xL (sequences of 

competitors were

SIRPKAQELRHLADQFSAEIARR

and

RSMVFARHLREVGDEFRSRHLNS

, respectively). The full experimental protocol has been described in [23]. We determined 

KD values by fitting the data to the model described in [38].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

- relating sequence to binding function is a fundamental goal in proteomics

- SORTCERY determines binding semi-quantitatively for large peptide 

libraries

- the method combines cell sorting, deep-sequencing and computational post-

analysis

- 1000 peptide ligands of Bcl-xL were ranked with high accuracy using 

SORTCERY

- this approach has high potential to provide binding data for many protein 

families
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Figure 1. 
SORTCERY ranks yeast displayed peptide ligands according to their affinities for a target. 

A) The experimental setup comprises a yeast displayed peptide ligand and a soluble target 

molecule. The expression level of the ligand and the binding level of the target are 

monitored by fluorescence labeled antibodies that recognize respective tags. These two 

fluorescence signals enable two-color sorting by FACS according to the target affinities for 

the displayed ligands. The schematic depicts an example with twelve areas in signal space 

(FACS gates) that correspond to twelve different affinity ranges. B) A SORTCERY 

experiment consists of five steps. First, a yeast displayed library of peptides is sorted by 

FACS into a set of gates that correspond to different ranges of affinities. The schematic 

shows four clonal populations each displaying a peptide of different binding strength (green, 

red, brown, blue). Second, each sorted pool is deep sequenced. Third, frequency 

distributions over the FACS gates are constructed for each observed sequence. Fourth, pairs 

of distributions are compared to determine the probability that one peptide binds stronger 

than the other. Fifth, a global ranking is derived from the pairwise probabilities.
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Figure 2. 
Predicted relation between expression and binding fluorescence signals and dissociation 

constants (KD). Panels show the expected distribution of binders at target concentrations of 

A) 0.02 nM, B) 1 nM and C) 50 nM. The red lines correspond to binders with dissociation 

constants of 0.4 nM, 4 nM, 40 nM and 400 nM. The dark gray area in the upper left corner 

indicates a “forbidden region” that corresponds to binding of target molecules to the cell 

surface in excess of ligand expression. In the light gray area Fa contributes significantly to 

the binding signal and the linear assumption (eq. 6) does not hold. The orange arrow 

indicates an axis perpendicular to the red lines. Projection of the lines on this axis permits an 

estimate of affinities.
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Figure 3. 
Experimental tests of model predictions. A) FACS profiles of four different BH3-displaying 

yeast clones. Dissociation constants (KD), mean slopes (ms) and corresponding standard 

deviations (stdv) of the first principal components from 24 independent measurements, 

determined using expressing cells with log(expression signal) > 3, are indicated in each 

panel. Cells with log(expression signal) < 3 are non-expressing. Red lines indicate the 

orientation of the first principal component of the expressing population. In the case of the 

weakest binder, a small set of points in the baseline was retained that biased the principal 

component towards smaller slopes. All clones were incubated with 1 nM Bcl-xL. B) FACS 

profiles of displayed BH3 peptides with different affinities converge under saturating 

conditions. The blue profile in the upper and lower panel is from the same measurement of a 

BH3-displaying clone with a dissociation constant of 10 nM. In the upper panel the red 

profile corresponds to a clone with a dissociation constant of 2.4 nM. In the lower panel the 

red profile is from a clone with a dissociation constant of 0.06 nM. All profiles are 

superimposed, as expected for a Bcl-xL concentration >> KD ([Bcl-xL] = 500 nM). C) Plot of 

log  versus the coordinate of affinity for 11 different BH3 sequences. Data 

points indicate mean values of multiple experiments. We determined coordinates of affinity 

in duplicate and dissociation constants at least in duplicate. The red line indicates an 

unconstrained linear fit. The green line corresponds to a constrained linear fit with a slope of 

. D) Probability densities for individual BH3-displaying clones over the axis of 

affinity. Dissociation constants of the BH3 peptides are: black 0.06 nM, red 1 nM, green 10 

nM, blue 60 nM. The vertical lines indicate the coordinates of affinity of the gate 

delimitations that run perpendicular to the axis of affinity.
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Figure 4. 
Ranking by SORTCERY agrees well with ranking based on individual measurements. In 

both panels global SORTCERY ranks were re-indexed from 1 to 19. A) Dissociation 

constants versus corresponding predicted rankings for 19 out of 1026 BH3 sequences. Error 

bars for the rankings indicate the ranks that each BH3 peptide assumed within 95% 

confidence during the bootstrap runs. Error bars for the KD values are the standard deviation 

over four independent measurements for each BH3 peptide. B) Comparison of rankings 

obtained from individual titrations with the rankings obtained from SORTCERY.
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Figure 5. 
Sequence logos for different subsets of the observed sequences in the SORTCERY 

experiment. A) and B), Bim and Puma variant sequences. C), D), E) and F), sequence logos 

for Puma variant sequences in different KD regimes. C) KD ≤ 1 nM, D) 1 nM < KD < 10 nM, 

E) 10 nM ≤ KD ≤ 40 nM, F) KD > 40 nM.
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Figure 6. 
Comparison of the ranking from individually measured KD values vs. rankings from 

different one-gate sorting schemes and analyses. A), C) and E) Standard deviations between 

the two types of rankings for different numbers of combined highest-affinty gates in the one-

gate scheme. The standard deviation of the SORTCERY ranking from the ranking by 

individually determined KD values was 1.9. B), D) and F) Comparison of experimental KD 

values to ranks from the one-gate sorting methods. Black data points in panels B, D and F 

indicate Puma variants, gray data points indicate Bim variants. Error bars on the rankings 
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indicate the ranks that each BH3 peptide assumed within a 95% confidence interval during a 

bootstrap analysis. Error bars for the KD values indicate the standard deviation over four 

independent measurements. A–B) Ranking by enrichment values using the 5 highest-affinity 

gates for data in panel B. C–D) Ranking by positional enrichment using the 4 highest-

affinity gates for data in panel D. E–F) Ranking by PSSM scores using the 10 highest-

affinity gates for data in panel F.
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