128 research outputs found
An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy
© 2017 Institute of Physics and Engineering in Medicine. Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target's projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker's 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of -0.03 ± 0.32 mm, -0.01 ± 0.13 mm and 0.03 ± 0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07 ± 1.18°, 0.07 ± 1.00° and 0.06 ± 1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81 motion traces from 19 liver patients and was found to have sub-mm and sub-degree accuracy
Dose reconstruction including dynamic six-degree of freedom motion during prostate radiotherapy
© Published under licence by IOP Publishing Ltd. An in-house developed program for real-time reconstruction of motion-induced dose errors, DoseTracker, was extended to handle rotational target motion in addition to the previously implemented translational motion, and applied offline for prostate VMAT treatments. For translational motion, the motion-induced errors of DoseTracker were in good agreement with ground truth dose reconstructions performed in a commercial treatment planning system. For rotational motion, no ground truth was available, but DoseTracker showed that the VMAT dose is highly robust against static interfractional rotations but quite sensitive to dynamic intrafraction rotations due to interplay effects between target motion and machine motion
An augmented correlation framework for the estimation of tumour translational and rotational motion during external beam radiotherapy treatments using intermittent monoscopic x-ray imaging and an external respiratory signal
© 2018 Institute of Physics and Engineering in Medicine. Increasing evidence shows that intrafraction tumour motion monitoring must include both six degrees of freedom (6DoF): 3D translations and 3D rotations. Existing real-time algorithms for 6DoF target motion estimation require continuous intrafraction fluoroscopic imaging at high frequency, thereby exposing patients to additional high imaging dose. This paper presents the first method capable of 6DoF motion monitoring using intermittent 2D kV imaging and a continuous external respiratory signal. Our approach is to optimise a state-augmented linear correlation model between an external signal and internal 6DoF motion. In standard treatments, the model can be built using information obtained during pre-treatment cone beam CT (CBCT). Real-time 6DoF tumor motion can then be estimated using just the external signal. Intermittent intrafraction kV images are used to update the model parameters, accounting for changes in correlation and baseline shifts. The method was evaluated in silico using data from 6 lung SABR patients, with the internal tumour motion recorded with electromagnetic beacons and the external signal from a bellows belt. Projection images from CBCT (10 Hz) and intermittent kV images were simulated by projecting the 3D Calypso beacon positions onto an imager. IMRT and VMAT treatments were simulated with increasing imaging update intervals: 0.1 s, 1 s, 3 s, 10 s and 30 s. For all the tested clinical scenarios, translational motion estimates with our method had sub-mm accuracy (mean) and precision (standard deviation) while rotational motion estimates were accurate to < and precise to . Motion estimation errors increased as the imaging update interval increased. With the largest imaging update interval (30 s), the errors were mm, mm and mm for translation in the left-right, superior-inferior and anterior-posterior directions, respectively, and , and for rotation around the aforementioned axes for both VMAT and IMRT treatments. In conclusion, we developed and evaluated a novel method for highly accurate real-time 6DoF motion monitoring on a standard linear accelerator without requiring continuous kV imaging. The proposed method achieved sub-mm and sub-degree accuracy on a lung cancer patient dataset
4D treatment planning for scanned ion beams
At Gesellschaft für Schwerionenforschung (GSI) more than 330 patients have been treated with scanned carbon ion beams in a pilot project. To date, only stationary tumors have been treated. In the presence of motion, scanned ion beam therapy is not yet possible because of interplay effects between scanned beam and target motion which can cause severe mis-dosage. We have started a project to treat tumors that are subject to respiratory motion. A prototype beam application system for target tracking with the scanned pencil beam has been developed and commissioned
Breathing adapted radiotherapy: a 4D gating software for lung cancer
<p>Abstract</p> <p>Purpose</p> <p>Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose.</p> <p>Methods and Materials</p> <p>Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT.</p> <p>Results</p> <p>Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case.</p> <p>Conclusions</p> <p>The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT.</p
Dosimetric precision of an ion beam tracking system
<p>Abstract</p> <p>Background</p> <p>Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams.</p> <p>Methods</p> <p>A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion.</p> <p>Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system.</p> <p>Results</p> <p>All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements.</p> <p>Conclusions</p> <p>The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems.</p
Verifying 4D gated radiotherapy using time-integrated electronic portal imaging: a phantom and clinical study
<p>Abstract</p> <p>Background</p> <p>Respiration-gated radiotherapy (RGRT) can decrease treatment toxicity by allowing for smaller treatment volumes for mobile tumors. RGRT is commonly performed using external surrogates of tumor motion. We describe the use of time-integrated electronic portal imaging (TI-EPI) to verify the position of internal structures during RGRT delivery</p> <p>Methods</p> <p>TI-EPI portals were generated by continuously collecting exit dose data (aSi500 EPID, Portal vision, Varian Medical Systems) when a respiratory motion phantom was irradiated during expiration, inspiration and free breathing phases. RGRT was delivered using the Varian RPM system, and grey value profile plots over a fixed trajectory were used to study object positions. Time-related positional information was derived by subtracting grey values from TI-EPI portals sharing the pixel matrix. TI-EPI portals were also collected in 2 patients undergoing RPM-triggered RGRT for a lung and hepatic tumor (with fiducial markers), and corresponding planning 4-dimensional CT (4DCT) scans were analyzed for motion amplitude.</p> <p>Results</p> <p>Integral grey values of phantom TI-EPI portals correlated well with mean object position in all respiratory phases. Cranio-caudal motion of internal structures ranged from 17.5–20.0 mm on planning 4DCT scans. TI-EPI of bronchial images reproduced with a mean value of 5.3 mm (1 SD 3.0 mm) located cranial to planned position. Mean hepatic fiducial markers reproduced with 3.2 mm (SD 2.2 mm) caudal to planned position. After bony alignment to exclude set-up errors, mean displacement in the two structures was 2.8 mm and 1.4 mm, respectively, and corresponding reproducibility in anatomy improved to 1.6 mm (1 SD).</p> <p>Conclusion</p> <p>TI-EPI appears to be a promising method for verifying delivery of RGRT. The RPM system was a good indirect surrogate of internal anatomy, but use of TI-EPI allowed for a direct link between anatomy and breathing patterns.</p
- …