275 research outputs found

    Observation of a Triangular to Square Flux Lattice Phase Transition in YBCO

    Full text link
    We have used the technique of small-angle neutron scattering to observe magnetic flux lines directly in an YBCO single crystal at fields higher than previously reported. For field directions close to perpendicular to the CuO2 planes, we find that the flux lattice structure changes smoothly from a distorted triangular co-ordination to nearly perfectly square as the magnetic induction approaches 11 T. The orientation of the square flux lattice is as expected from recent d-wave theories, but is 45 deg from that recently observed in LSCO

    Synthesis and pre-clinical evaluation of a [18F] fluoromethyl-tanaproget derivative for imaging of progesterone receptor expression

    Get PDF
    The estrogen receptor (ER) and progesterone receptor (PR) are over-expressed in ∼50% of breast cancer lesions, and used as biomarkers to stratify patients for endocrine therapy. Currently, immunohistochemical (IHC) assessment of these lesions from a core-needle biopsy in deep-sited metastases has limitations associated with sampling error and lack of standardization. An alternative solution is positron emission tomography (PET)-based probes, which are inherently quantitative and capable of imaging the entire tumor, including metastases. This work features the synthesis and biological evaluation of a novel fluorinated derivative of tanaproget, a high affinity non-steroidal PR ligand, as a candidate for imaging PR expression in vivo. Radiolabeling of the candidate was achieved in a 15% ± 4 radiochemical yield (non-decay corrected) in one step from [18F]fluoromethyltosylate in 30 min. Cell uptake studies showed a significant difference between the radioligand uptake in PR+ and PR- cell lines; however, in vivo imaging was confounded by defluorination hypothesized to occur via iminium salt formation. Investigation into high affinity, metabolically stable non-steroidal PR ligands is currently ongoing

    Phenomenological theory of the 3 Kelvin phase in Sr2RuO4

    Full text link
    We model the 3K-phase of Sr2RuO4 with Ru-metal inclusion as interface state with locally enhanced transition temperatures. The resulting 3K-phase must have a different pairing symmetry than the bulk phase of Sr2RuO4, because the symmetry at the interface is lower than in the bulk. It is invariant under time reversal and a second transition, in general, above the onset of bulk superconductivity is expected where time reversal symmetry is broken. The nucleation of the 3K-phase exhibits a ``capillary effect'' which can lead to frustration phenomena for the superconducting states on different Ru-inclusions. Furthermore, the phase structure of the pair wave function gives rise to zero-energy quasiparticle states which would be visible in quasiparticle tunneling spectra. Additional characteristic properties are associated with the upper critical field Hc2. The 3K-phase has a weaker anisotropy of Hc2 between the inplane and z-axis orientation than the bulk superconducting phase. This is connected with the more isotropic nature Ru-metal which yields a stronger orbital depairing effect for the inplane magnetic field than in the strongly layered Sr$_2RuO4. An anomalous temperature dependence for the z-axis critical field is found due to the coupling of the magnetic field to the order parameter texture at the interface. Various other experiments are discussed and new measurements are suggested.Comment: 10 pages, 5 figure

    Detailed study of the ac susceptibility of Sr2RuO4 in oriented magnetic fields

    Get PDF
    We have investigated the ac susceptibility of the spin triplet superconductor Sr2_2RuO4_4 as a function of magnetic field in various directions at temperatures down to 60 mK. We have focused on the in-plane field configuration (polar angle θ90\theta \simeq 90^{\circ}), which is a prerequisite for inducing multiple superconducting phases in Sr2_2RuO4_4. We have found that the previous attribution of a pronounced feature in the ac susceptibility to the second superconducting transition itself is not in accord with recent measurements of the thermal conductivity or of the specific heat. We propose that the pronounced feature is a consequence of additional involvement of vortex pinning originating from the second superconducting transition.Comment: Accepted for publication in Phys. Rev.

    Acral necrosis by Stenotrophomonas maltophilia

    Get PDF
    Keywords:necrosis;skin and soft tissue infection;Stenotrophomonas maltophilia Abstract Background Stenotrophomonas maltophilia (SM) has been considered a nosocomial pathogen. Nevertheless, community acquired infection may occur more frequently than usually recognized. Case We describe distal necrosis of the fingers by SM in a farmer, contracted in the community and successfully treated with a combination of cotrimoxazole and ciprofloxacin. The patient was diagnosed with chronic lymphocytic leukaemia 6 months later. Conclusions This unusual presentation shows that infection with SM should be included in the differential diagnosis of the skin and soft tissue infection, even in apparently healthy patients

    Flux-Line Lattice Structures in Untwinned YBa2Cu3O

    Full text link
    A small angle neutron scattering study of the flux-line lattice in a large single crystal of untwinned YBa2Cu3O is presented. In fields parallel to the c-axis, diffraction spots are observed corresponding to four orientations of a hexagonal lattice, distorted by the a-b anisotropy. A value for the anisotropy, the penetration depth ratio, of 1.18(2) was obtained. The high quality of the data is such that second order diffraction is observed, indicating a well ordered FLL. With the field at 33 degrees to c a field dependent re-orientation of the lattice is observed around 3T.Comment: 4 pages, 4 figure
    corecore