3,737 research outputs found

    Elaboration and characterization of nanoplate structured alpha-Fe2O3 films by Ag3PO4

    Get PDF
    A new strategy for surface treatment of hematite nanoplates for efficient photoelectrochemical (PEC) performances is proposed. Silver orthophosphate (Ag₃PO₄) has been adopted to mediate the formation of α-Fe₂O₃ films. Phosphate ions in Ag₃PO₄ is found to cause a significant morphology change during annealing process, from β-FeOOH nanorod arrays to hematite nanoplates. Meanwhile, Ag ions is doped into α-Fe₂O₃ film. The obtained nanoplate structured Fe₂O₃ –Ag–P films demonstrate much higher photoelectrochemical performance as photoanodes than the bare Fe₂O₃ nanorod thin films. The effects of phosphate and silver ions on the morphology, surface characteristics and the PEC properties of the photoanodes are investigated

    Intensity-free Integral-based Learning of Marked Temporal Point Processes

    Full text link
    In the marked temporal point processes (MTPP), a core problem is to parameterize the conditional joint PDF (probability distribution function) p∗(m,t)p^*(m,t) for inter-event time tt and mark mm, conditioned on the history. The majority of existing studies predefine intensity functions. Their utility is challenged by specifying the intensity function's proper form, which is critical to balance expressiveness and processing efficiency. Recently, there are studies moving away from predefining the intensity function -- one models p∗(t)p^*(t) and p∗(m)p^*(m) separately, while the other focuses on temporal point processes (TPPs), which do not consider marks. This study aims to develop high-fidelity p∗(m,t)p^*(m,t) for discrete events where the event marks are either categorical or numeric in a multi-dimensional continuous space. We propose a solution framework IFIB (\underline{I}ntensity-\underline{f}ree \underline{I}ntegral-\underline{b}ased process) that models conditional joint PDF p∗(m,t)p^*(m,t) directly without intensity functions. It remarkably simplifies the process to compel the essential mathematical restrictions. We show the desired properties of IFIB and the superior experimental results of IFIB on real-world and synthetic datasets. The code is available at \url{https://github.com/StepinSilence/IFIB}

    Development of a trench cutting re-mixing deep wall method model test device

    Get PDF
    The trench cutting re-mixing deep wall (TRD) is a new type of underground waterproof curtain. Mixing uniformity is the key index affecting the efficiency and quality of this method. However, because of many influencing factors, existing theories cannot be used to express the relationship between various factors and mixing uniformity. By analyzing the cutting and mixing process of the TRD method, the main factors affecting the uniformity of the mixing were obtained. A model test device was designed and manufactured, based on Buckingham's pi theorem. The validity of the model test device was verified through a comparative analysis of model and field test results. The model test device was demonstrated to be able to simulate the mixing process of the TRD method. The results provide guidance for promotion and better application of the TRD method

    Ultra-high-linearity integrated lithium niobate electro-optic modulators

    Full text link
    Integrated lithium niobate (LN) photonics is a promising platform for future chip-scale microwave photonics systems owing to its unique electro-optic properties, low optical loss and excellent scalability. A key enabler for such systems is a highly linear electro-optic modulator that could faithfully covert analog electrical signals into optical signals. In this work, we demonstrate a monolithic integrated LN modulator with an ultrahigh spurious-free dynamic range (SFDR) of 120.04 dB Hz4/5 at 1 GHz, using a ring-assisted Mach-Zehnder interferometer configuration. The excellent synergy between the intrinsically linear electro-optic response of LN and an optimized linearization strategy allows us to fully suppress the cubic terms of third-order intermodulation distortions (IMD3) without active feedback controls, leading to ~ 20 dB improvement over previous results in the thin-film LN platform. Our ultra-high-linearity LN modulators could become a core building block for future large-scale functional microwave photonic integrated circuits, by further integration with other high-performance components like low-loss delay lines, tunable filters and phase shifters available on the LN platform

    A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Get PDF
    This document is the Accepted Manuscript version of the following article: Ling Ren, Kaveh Memarzadeh, Shuyuan Zhang, Ziqing Sun, Chunguang Yang, Guogang Ren, Robert T. Allaker, Ke Yang, ‘A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties’, Vol. 67: 461-467, October 2016, doi: http://dx.doi.org/10.1016/j.msec.2016.05.069. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ .OBJECTIVE: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. METHODS: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. RESULTS: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. SIGNIFICANCE: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications.Peer reviewe
    • …
    corecore