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A B S T R A C T

The trench cutting re-mixing deep wall (TRD) is a new type of underground waterproof curtain. Mixing uni-
formity is the key index affecting the efficiency and quality of this method. However, because of many influ-
encing factors, existing theories cannot be used to express the relationship between various factors and mixing
uniformity. By analyzing the cutting and mixing process of the TRD method, the main factors affecting the
uniformity of the mixing were obtained. A model test device was designed and manufactured, based on
Buckingham’s pi theorem. The validity of the model test device was verified through a comparative analysis of
model and field test results. The model test device was demonstrated to be able to simulate the mixing process of
the TRD method. The results provide guidance for promotion and better application of the TRD method.

1. Introduction

The trench cutting re-mixing deep wall (TRD) is a new type of un-
derground waterproof curtain. It is only suitable for soft soil layers
(sand and peat as well as clay with an undrained shear strength
of< 600 kPa) because it uses chain cutters to cut and mix (Peng, 2017).
The sand layer is a common water-permeable stratum in a soft soil
layer. In the TRD method, the sand layer is forcibly stirred with other
layers, destroying its continuity and thereby significantly reducing the
permeability of the mixed area. Cement slurry is injected to reduce the
permeability further and to increase the strength of the mixed soil. At
present, the method has been widely used throughout the world
(Garbin et al., 2010, Akagi, 2006, Gularte et al., 2007, Wang et al.,
2014). The construction process for this method is shown in Fig. 1.

Mixing uniformity is one of the main purposes of the TRD method,
and it is also the key to ensure the treatment effect. If the chain cutters
(Fig. 2) cannot move sand particles into other layers and mix with
them, it then becomes difficult to retain the subsequently injected ce-
ment slurry in the mixed area, which not only seriously affects the
treatment effect but also wastes resources. In practice, there have been
many incidents of water leakage caused by uneven mixing (Wang,
2017).

Wang, 2017 has conducted much research on the method and given
guiding conclusions for various parameters in the application process.
With these results, the method was successfully applied in various

foundation pit projects. Chaney et al. (2001) and Malusis et al. (2017)
have conducted numerous experimental studies on materials used in
the TRD method. However, none of the research mentioned above
employed model tests on the TRD mixing process. This paper focuses on
developing a TRD model test device based on Buckingham’s pi theorem,
whose rationality was verified by comparing the results of the model
and field test. The results showed that the mixing efficiency of TRD
reduced when the particle size was large. The sand particles would
settle when the diameter of the sand is more than the specific diameter
after the mixing procedure stopped.

The model test can replace the field the test which is carried out to
measure TRD parameters before construction and has good economics.
In addition, the model test device has other benefits. Firstly, the test
device can research the mixing time and mixing efficiency of the TRD
method, which can reduce costs and improve construction efficiency.
Secondly, it can also test the mixing effect of the different shape cutters.
Thirdly, the test device can study the difficulty of mixing additional
materials with cement soil using the TRD method.

2. Design of the model test device

2.1. Mixing process

During the TRD mixing process, the soil is stripped of the original
formation by the cutters, and the clay particles are mixed with the
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injected bentonite slurry, as shown in Fig. 3 area I, to form a mixed
slurry. Some sand particles from the sand layer are carried upward by
the chain cutters, as shown in area II. The other part settles under
gravity through the gap between the cutting teeth, as shown in area III,
and is mixed with the particles carried by the chain cutters from the
bottom of mixing area, as shown in area IV. Then, under the action of
the chain cutters, these particles are moved upward and finally mixed
with other layers.

To study the influence of the various factors on mixing uniformity, a
TRD method model test device was developed. It is based on the ex-
cavation project for the Shengliqiao Station exit of Qingdao Metro Line
1 in Qingdao, China, where a field test was conducted to verify the
validity of the simulation of the model test device.

2.2. Model test similarity

Similarity is the key to determining the validity of the model test
device (Phoon et al., 2019, Wood, 2017). Because there are many fac-
tors that influence the mixing process, it is difficult to determine a fixed
functional relationship between these factors and mixing uniformity. By
analyzing the mixing process, we determined that machine, sand par-
ticle, and mixed mud parameters all affect uniformity (Larsson, S.,
2005). The machine parameters include the mixing velocity (ν), the
mixing time (t), and the cutter physical dimension (L). The sand par-
ticle parameters include the sand layer depth (H ), the grain density (ρs),
and the grain concentration (C). The mixed mud parameters include the
mud density (ρf ), the mud viscosity (μ), and the mud ultimate shear
force (τ0). From Buckingham’s pi theorem (Hassanien et al., 2011), the
following function is assumed:

=f ν t L H ρ μ τ ρ C( , , , , , , , , ) 0s f0 (1)

Taking the cutter physical dimension (L), the mixing time (t), and
the grain density (ρs) as dimension-independent physical quantities, we
have
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where the subscript m indicates the model test parameter and the
subscript p indicates the in situ parameter.
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Fig. 1. Schematic diagram showing the steps of the TRD method.

Fig. 2. Photograph of the TRD machine.

Fig. 3. Schematic diagram of the TRD mixing process.
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where π1 ~ π6 are dimensionless parameters.
The model machine cutter was reduced in size from that of the

actual cutter, which is large and cannot be applied in the model test,
and the ratio is 1/3. The mixing velocity of the model machine was
controlled by frequency modulation and was consistent with the in situ
stirring velocity. The similarity coefficients of the cutter’s physical di-
mensions (SL) and the velocity (Sν) are
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Sand and clay encountered in the field tests are also used in the
model tests. The soil was compacted during the filling process. After the
filling was completed, the density tests were performed to ensure
consistency with the field layer. Therefore, the similarity coefficient of
the grain density (Sρs) is
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According to the volume of the soil to be stirred, the amount of
cutting fluid was added for cutting and mixing. The model test mixed
mud should be the same as the in situ mud. Therefore, the similarity
coefficients of the mixed mud viscosity (Sμ), ultimate shear resistance
(Sτ0), and density (Sρf ) are
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The particle concentration of the model test after mixing was con-
sistent with the in situ value. The concentration similarity coefficient
(SC) is
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C

1C
m

p (15)

Substituting in each physical quantity gives the sand depth coeffi-
cient
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and the time similarity coefficient
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The following similarity criteria must be met:
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2.3. Model test device

As shown in Figs. 4 and 5, the model test device mainly comprises a
vertical mixing device, a horizontal moving device, a grouting device, a
container, and a horizontal moving platform. The vertical mixing de-
vice is installed on the horizontal moving platform, which is placed on
the horizontal track. The horizontal movement and the vertical mixing
speed are, respectively, driven by two independent frequency-modu-
lated motors, which are adjusted by two controllers. The horizontal
movement speed range is 0–0.1 m/s, and the mixing speed range was
0–1 m/s. Two torque sensors are installed between the motor and the
drive gear to monitor the horizontal movement and the mixing load,
respectively. Both have a measurement range from 0 to 500 N m. The
container has a length of 2 m, a width of 0.5 m, and a height of 1.2 m.
The model cutter have a length of 20 cm, a width of 2 cm, and a height
of 3 cm, which is one-third of the in situ value.

(a) Front view

(b) Side view 
Fig. 4. Schematic diagram of the TRD method model test.
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3. Model tests

The results of the model tests were compared with field test results
to verify the validity of the model test device. A 5 m long area was
selected as the field test area (Fig. 6) to be simulated in the model; the
field test area was taken from the excavation project for the Shengliqiao
Station exit of Qingdao Metro Line 1 (Qingdao Geology and
Geotechnical Engineering Co., Ltd, 2015).

The thickness of the sand layer in this area is 0.45 m and the mixing
depth is 3 m. In the model test, the height of the mixed area was set to
1 m. To meet the sand layer depth coefficient, a 15 cm thick sand layer
was filled in the container. A 35 cm clay layer was placed below the
sand layer and a 50 cm clay layer was placed above it, as shown in
Fig. 4(a). Soil physical parameters were shown in Table 1.

3.1. Sands and soil for model tests

The model test particle volume per sample was equal to that in the
field test after mixing evenly, which ensures the correct validation test.
The sands and soil for the model test were collected at the time of the
excavation of the Shengliqiao Station. The sand particle and soil fill
parameters in the model test were consistent with the field tests. The
particle-size distribution curve of the sand layer is shown in Fig. 7. The
model test sands contained many sand particles with a diameter of>
5 mm.

3.2. Cutting fluid ratio

The cutting fluid reduces the cutting resistance and increases the
moisture content of the mixed area, and it is mixed with the soil par-
ticles to form the mixed mud. At the same time, the mixed mud can
keep the sand particles suspended to ensure uniformity before solidi-
fication. The cutting fluid currently consists of bentonite and tackifiers.
The ratios of different soils to bentonite and tackifier are given in
Table 2, and the table flow (TF) value of the mixed mud meets the
requirements of 180 ± 20 mm (Shi et al., 2013, Ressi and Cavalli,
1985) The mixed area soil was experimentally determined to have
24 kg/m3 of bentonite. In the model tests, the volume of the soil in the
mixed zone was 0.4 m3. Therefore, 9.6 kg of bentonite was required,
and the water/bentonite ratio was 7.5 to meet the TF requirements. In
the model test, the cutting fluid was metered by the pump in the mixing
area.

3.3. Model test procedure

The mixing device was moved to one end of the container. The
sands and soil were filled into the tank, and the layer was compacted
step by step to ensure similarity to the field layer. In each layer, a
cutting ring is used to take samples to test the density and moisture of
the filled soil, which could ensure that the soil in the model test is
consistent with the in-situ soil. After the completion of the filling, as
shown in Fig. 8, the vertical mixing motor was turned on, and the
corresponding bentonite slurry was injected uniformly at the end of the
chain cutters. The vertical mixing speed was adjusted after the device
ran smoothly. The horizontal moving motor was turned on and adjusted
to the required horizontal moving speed. When the cutting device en-
tered the particle collection point (Fig. 4), the sample collection device
(Fig. 9) was used to collect the sample, the volume of which was 25 ml.
Sands in the sample with diameters of> 0.5 mm were weighed after
cleaning and sieving. Particle concentrations measured at the same
sampling point depth were arithmetically averaged to obtain this par-
ticle concentration of this depth.

3.4. Model test contents

Four groups of tests (Table 3) were conducted with different dia-
meters of sand particles: in situ sands and sands with diameters of 2–5,
5–7.5 (Fig. 8), and 10–15 mm (see Table 4).

4. Field test

The field test (see Fig. 10) was conducted by using an LSJ60 ma-
chine (see Fig. 2) from China Railway Construction Heavy Industry Co.
Ltd., as shown in Fig. 11. The mixing speed was 1 m/s, and the hor-
izontal moving speed was 2 m/h, which are consistent with the running
speeds of the model test machine.

Fig. 6(a) shows the sampling points. They are consistent with the
layout of the model test sampling points, and the same sampling
method was used in the field test. The sampling points had a horizontal
spacing of 1 m, being located at horizontal positions of 2, 3, and 4 m,
and a vertical spacing of 0.6 m, respectively, at four locations of 0.6,
1.2, 1.8, and 2.4 m, for a total of 12 sampling points. The results of the
field test were treated in the same way as those of the model test.

5. Analysis of test results

5.1. Model test results

(1) The first group of tests was conducted using sand from the
Shengliqiao Station. The test results are shown in Fig. 11.

After the beginning of the test, the sand concentration became more
uniform. The sand concentration was close to a uniform state after 90s,

Fig. 5. Model test device.

Fig. 6. Stratigraphic profile of the field test area.
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and the rate of change then lessened. The particle diameter of the sand
was<10 mm; the sand particles were collected at sampling points of
20 and 40 cm in depth during this time. As mixing continued, larger
particles appeared, and the particle concentration slowly increased to a
uniform level, but the mixing efficiency decreased significantly. After
mixing began, the sand particles of the 60 cm depth collapsed into the
80 cm depth sampling point, thus causing a drastic change at the 60 and
80 cm deep sampling points. After mixing for 210 s, the particle con-
centration no longer changed. The mixing was stopped at 240 s. The
particle concentration decreased at depths of 20 and 40 cm, and the
particle concentration at the 80 cm depth increased, which was caused
by the free sedimentation of the larger sand particles.

(2) From the theory of solid–liquid two-phase flow (Nunziato,
1983), it is known that sand particles have a specific particle diameter
in a clay slurry, and sand particles of this diameter are just suspended in
the mixed mud. The specific particle diameter is determined by the
particle density and the properties of the mixed mud. Through the
above test, it was found that particles with diameters of> 10 mm

Table 1
Soil physical parameters of field test.

No Depth (m) Soil density (g/cm3) Grain density (g/cm3) Liquid limit (%) Plastic limit (%) Moisture(%) Cohesive strength (kPa) Internal friction angle (°)

1 0.7 1.97 2.74 37.2 19.8 27.5 31.3 10.2
2 1.0 2.08 2.74 37.2 19.8 24.5 38.3 8.8
3 1.3 2.01 2.74 37.3 19.7 25.0 35.2 11.3
4 2.2 1.98 2.75 37.4 17.7 25.3 22.3 10.3
5 2.5 2.01 2.75 37 17.8 23.8 28.5 18.1

Fig. 7. Particle-size distribution curve of the model test sands.

Table 2
Mixing ratios of cutting fluid (per 1 m3 of undisturbed soil).

Additive

Soil conditions Bentonite (kg) Tackifier (kg)

Clayey soil 0–5 0
Fine sand 5–15 0
Medium sand, coarse sand 15–25(20) 0–1
Gravel sand, gravel 25–50(30) 0–2.5
Cobblestone, crushed stone 50–75(40) 0–5.0

Fig. 8. Photograph of the filled container.

Fig. 9. Schematic diagram of the sand particle collection device.

Table 3
Model test contents.

Test No Diameter of sand (mm) Depth (cm) Thickness (cm)

1 2–5 50–65 15
2 5–7.5
3 10–15
4 in situ sands

Table 4
Comparison of permeability before and after mixing in the field test.

No Layer Depth (m) Permeability (cm/s)

Before mixing After mixing

1 Plain fill 0.2 7.2 × 10−2 3.2 × 10−7

2 Clay 0.8 3.8 × 10−5 2.8 × 10−7

3 Sand 1.7 5.2 × 10−2 2.5 × 10−7

4 Clay 2.5 1.5 × 10−6 4.7 × 10−7

Fig. 10. Field test area plan.
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precipitated, and the efficiency of uniform mixing decreased. Therefore,
10 mm is the special particle diameter. Three sets of simulation tests
with particle diameters of 2–5, 5–7.5, and 10–15 mm were performed,
with other test parameters remaining unchanged.

As shown in Figs. 11 and 12, the shape of the particle concentration
changes with time in the same manner in the four simulation tests, and
sand particles of different diameters can be evenly distributed in the
mixed mud. A comparison of the results of the three different diameter
particles shows that the 2–5 and 5–7.5 mm particles were suspended in
the mixed mud, and no sedimentation occurred after mixing stopped.
As shown in Fig. 12(c), the concentration curves of 10–15 mm particles
changed drastically, and the mixing time was increased to 840 s. After
the mixing stopped, particle sedimentation occurred at the 20 cm and
40 cm depths and particle deposition occurred at the 80 cm depth. The
front and side plates of the model test container were opened for
sampling after the mixed mud solidified, and the deposition area (60 cm
to 80 cm in depth) is shown in Fig. 13.

Therefore, if the particle diameter is smaller than the specific par-
ticle diameter, the sand layer is easily mixed uniformly at the depth
about 50 cm (Fig. 14). When the mixing stops, no sedimentation oc-
curred. When the particle diameter is larger than the specific particle
diameter, the sand layer is difficult to be evenly mixed, and the mixing
efficiency is low. Both upper particle sedimentation and lower particle
accumulation are likely to occur.

As shown in Fig. 15, the results of four simulation tests indicate that
sand particles with different diameters have little effect on the torque
under the same parameters.

5.2. Field test results

By analyzing the simulation and field test results (Figs. 11 and 16),
one can conclude that the curves of particle concentration over time in
the two tests are approximately the same. The uniform mixing time in
the field test was 640 s, which is a factor of 3.05 greater than that of the
model tests. The result is approximately the same as for the time si-
milarity coefficient of the model test design. Therefore, the model test
device can simulate the TRD mixing process.

Mixing was stopped at 690 s, and a certain amount of particle
concentration sedimentation occurred at the 0.6 m and 1.2 m sampling
points, which was consistent with the model test phenomenon. By
sieving, it was found that the sinking particles were mainly particles
having a diameter of> 10 mm. Therefore, the cement slurry should be
injected in time to prevent a large number of particles from settling,
which ensures the mixing effect.

As shown in Fig. 17, the particle-size distribution curve after

uniform mixing was significantly improved. Because the medium coarse
sand layer was mixed and evenly distributed in the stirring area, the
content of particles having diameters of> 5 mm was lowered. After
28 days of injecting the cement slurry, it was found that the particles
were evenly distributed in the core samples obtained by drilling, as
shown in Fig. 18. At the same time, the permeability was measured, and
reached 2.5 × 10−7 cm/s, which met the design requirements (Shi
et al., 2013). The method applies to the middle coarse sand layer in the

Fig. 11. Concentration curves of the Shengliqiao station particle with time in
the model test.

(a) 2–5 mm in diameter

(c) 10–15 mm in diameter

(b) 5–7.5 mm in diameter

Fig. 12. Concentration curves of different diameter particles with time in the–
model test.
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Qingdao area.

6. Conclusions

Through the model and field tests, the following conclusions are
obtained:

(1) The uniform mixing time in the field test was 640 s, which is a
factor of 3.05 greater than that of the model tests. The result is
approximately the same as for the time similarity coefficient of the
model test design. Therefore, the model test device can simulate the
TRD mixing process.

(2) The single sand layer particle concentration mixing curve was ob-
tained. In the upper part of the sand layer, the particle concentra-
tion slowly increases to a uniform level. The particle concentration
in the sand layer decreases rapidly. In the lower portion of the sand
layer, the particle concentration first increases quickly because of
sand layer caving and then slowly drops.

(3) Under the same conditions, when the diameter of sand particles
is> 10 mm, the time for even mixing increases notably, which
affects the stirring efficiency.10 mm is the specific particle diameter
for the Shengliqiao Station. The different diameter particles have
less influence on the torque than during the stirring process.

(4) If the particle diameter is smaller than the specific particle dia-
meter, the sand layer is easily mixed uniformly and no sedimenta-
tion occurred after stopping the mixing. When the particle diameter
is larger, the sand layer is difficult to be evenly mixed and the
mixing efficiency is low. Both upper particle sedimentation and

Fig. 13. 10–15 mm diameter particles deposition area in model test.

Fig. 14. Comparison of 2–5 mm diameter sand layers after solidification.

Fig. 15. Torque curves during mixing.

Fig. 16. Concentration curves of> 5 mm particles with time in the field test.

Fig. 17. Particle-size distribution curve of the mixed area.

Fig. 18. Photograph of the core sample at 2 m depth in the field test area.
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lower particle accumulation are likely to occur.

The model test device will enable studies of how new soil stabilizer
materials and the cutting fluid influence the performance of the mixed
wall during the mixing process in the future. Moreover, the relationship
between the mixing parameters can be further researched.
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