2,333 research outputs found

    Prostaglandin E2 Prevents Ovariectomy-Induced Cancellous Bone Loss in Rats

    Get PDF
    The object of this study was to determine whether prostaglandin E2, (PGE2) can prevent ovariectomy induced cancellous bone loss. Thirty-five 3-month-old female Sprague-Dawley rats were divided into two groups. The rats in the first group were ovariectomized (OVX) while the others received sham operation (sham-OVX). The OVX group was further divided into three treatment groups. The daily doses for the three groups were 0,1 and 6 mg PGE2/kg for 90 days. Bone histomorphometric analyses were performed on double-fluorescent-labeled undecalcified proximal tibial metaphysis (PTM). We confirmed that OVX induces massive cancellous bone loss (-80%) and a higher bone turnover (+143%). The new findings from the present study demonstrate that bone loss due to ovarian hormone deficiency can be prevented by a low-dose (1 mg) daily administration of PGE2. Furthermore, a higher-dose (6 mg) daily administration of PGE2 not only prevents bone loss but also adds extra bone to the proximal tibial metaphyses. PGE, at the 1-mg dose level significantly increased trabecular bone area, trabecular width, trabecular node density, density of node to node, ratio of node to free end, and thus significantly decreased trabecular separation from OVX controls. At this dose level, these same parameters did not differ significantly from sham-OVX controls. However, at the 6-mg dose level PGE2, there were significant increases in trabecular bone area, trabecular width, trabecular node density, density of node to node, and ratio of node to free end, while there was significant decrease in trabecular separation from both OVX and sham-operated controls. The changes in indices of trabecular bone microanatomical structure indicated that PGE2 prevented bone loss as well as the disconnection of existing trabeculae. In summary, PGE2, administration to OVX rats decreased bone turnover and increased bone formation parameters resulting in a positive bone balance that prevented bone loss (in both lower and higher doses) and added extra bone to metaphyses of OVX rats (in higher dose). These findings support the strategy of the use of bone stimulation agents in the prevention of estrogen depletion bone loss (postmenopausal osteoporosis)

    Production Behavior of Fractured Horizontal Well in Closed Rectangular Shale Gas Reservoirs

    Get PDF
    This paper established a triple porosity physical model in rectangular closed reservoirs to understand the complex fluid flowing mechanism and production behavior of multifractured horizontal wells in shale gas reservoirs, which is more appropriate for practical situation compared with previous ones. According to the seepage theory considering adsorption and desorption process in stable state, the gas production rate of a well producing at constant wellbore pressure was obtained by utilizing the methods of Green’s and source function theory and superposition principle. Meanwhile, the volume of adsorbed gas (GL) and the number of hydraulic fractures (M) as well as permeabilities of matrix system (km) and microfractures (kf) were discussed in this paper as sensitive factors, which have significant influences on the production behavior of the wells. The bigger the value of GL is, the larger the well production rate will be in the later flowing periods, and the differences of production rate with the increasing of M are small, which manifest that there is an optimum M for a given field. Therefore, the study in this paper is of significant importance to understand the dynamic production declining performance in shale gas reservoirs

    Finding Most Popular Indoor Semantic Locations Using Uncertain Mobility Data

    Get PDF

    In Search of Indoor Dense Regions:An Approach Using Indoor Positioning Data

    Get PDF

    Recent Intensified Influence of the Winter North Pacific Sea Surface Temperature on the Mei-Yu Withdrawal Date

    Get PDF
    Under embargo until: 2022-04-07The mei-yu withdrawal date (MWD) is a crucial indicator of flood/drought conditions over East Asia. It is characterized by a strong interannual variability, but its underlying mechanism remains unknown. We investigated the possible effects of the winter sea surface temperature (SST) in the North Pacific Ocean on the MWD on interannual to interdecadal time scales. Both our observations and model results suggest that the winter SST anomalies associated with the MWD are mainly contributed to by a combination of the first two leading modes of the winter SST in the North Pacific, which have a horseshoe shape (the NPSST). The statistical results indicate that the intimate linkage between the NPSST and the MWD has intensified since the early 1990s. During the time period 1990–2016, the NPSST-related SST anomalies persisted from winter to the following seasons and affected the SST over the tropical Pacific in July. Subsequently, the SST anomalies throughout the North Pacific strengthened the southward migration of the East Asian jet stream (EAJS) and the southward and westward displacement of the western North Pacific subtropical high (WPSH), leading to an increase in mei-yu rainfall from 1 to 20 July. More convincingly, the anomalous EAJS and WPSH induced by the SST anomalies can be reproduced well by numerical simulations. By contrast, the influence of the NPSST on the EASJ and WPSH were not clear between 1961 and 1985. This study further illustrates that the enhanced interannual variability of the NPSST may be attributed to the more persistent SST anomalies during the time period 1990–2016.publishedVersio
    • …
    corecore