53,081 research outputs found

    Editorial: advances in understanding marine heatwaves and their impacts

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Benthuysen, J. A., Oliver, E. C. J., Chen, K., & Wernberg, T. Editorial: advances in understanding marine heatwaves and their impacts. Frontiers in Marine Science, 7, (2020): 147, doi:10.3389/fmars.2020.00147.Editorial on the Research Topic Advances in Understanding Marine Heatwaves and Their Impacts In recent years, prolonged, extremely warm water events, known as marine heatwaves, have featured prominently around the globe with their disruptive consequences for marine ecosystems. Over the past decade, marine heatwaves have occurred from the open ocean to marginal seas and coastal regions, including the unprecedented 2011 Western Australia marine heatwave (Ningaloo Niño) in the eastern Indian Ocean (e.g., Pearce et al., 2011), the 2012 northwest Atlantic marine heatwave (Chen et al., 2014), the 2012 and 2015 Mediterranean Sea marine heatwaves (Darmaraki et al., 2019), the 2013/14 western South Atlantic (Rodrigues et al., 2019) and 2017 southwestern Atlantic marine heatwave (Manta et al., 2018), the persistent 2014–2016 “Blob” in the North Pacific (Bond et al., 2015; Di Lorenzo and Mantua, 2016), the 2015/16 marine heatwave spanning the southeastern tropical Indian Ocean to the Coral Sea (Benthuysen et al., 2018), and the Tasman Sea marine heatwaves in 2015/16 (Oliver et al., 2017) and 2017/18 (Salinger et al., 2019). These events have set new records for marine heatwave intensity, the temperature anomaly exceeding a climatology, and duration, the sustained period of extreme temperatures. We have witnessed the profound consequences of these thermal disturbances from acute changes to marine life to enduring impacts on species, populations, and communities (Smale et al., 2019). These marine heatwaves have spurred a diversity of research spanning the methodology of identifying and quantifying the events (e.g., Hobday et al., 2016) and their historical trends (Oliver et al., 2018), understanding their physical mechanisms and relationships with climate modes (e.g., Holbrook et al., 2019), climate projections (Frölicher et al., 2018), and understanding the biological impacts for organisms and ecosystem function and services (e.g., Smale et al., 2019). By using sea surface temperature percentiles, temperature anomalies can be quantified based on their local variability and account for the broad range of temperature regimes in different marine environments. For temperatures exceeding a 90th-percentile threshold beyond a period of 5-days, marine heatwaves can be classified into categories based on their intensity (Hobday et al., 2018). While these recent advances have provided the framework for understanding key aspects of marine heatwaves, a challenge lies ahead for effective integration of physical and biological knowledge for prediction of marine heatwaves and their ecological impacts. This Research Topic is motivated by the need to understand the mechanisms for how marine heatwaves develop and the biological responses to thermal stress events. This Research Topic is a collection of 18 research articles and three review articles aimed at advancing our knowledge of marine heatwaves within four themes. These themes include methods for detecting marine heatwaves, understanding their physical mechanisms, seasonal forecasting and climate projections, and ecological impacts.We thank the contributing authors, reviewers, and the editorial staff at Frontiers in Marine Science for their support in producing this issue. We thank the Marine Heatwaves Working Group (http://www.marineheatwaves.org/) for inspiration and discussions. This special issue stemmed from the session on Advances in Understanding Marine Heat Waves and Their Impacts at the 2018 Ocean Sciences meeting (Portland, USA)

    Multidimensional optical fractionation with holographic verification

    Full text link
    The trajectories of colloidal particles driven through a periodic potential energy landscape can become kinetically locked in to directions dictated by the landscape's symmetries. When the landscape is realized with forces exerted by a structured light field, the path a given particle follows has been predicted to depend exquisitely sensitively on such properties as the particle's size and refractive index These predictions, however, have not been tested experimentally. Here, we describe measurements of colloidal silica spheres' transport through arrays of holographic optical traps that use holographic video microscopy to track individual spheres' motions in three dimensions and simultaneously to measure each sphere's radius and refractive index with part-per-thousand resolution. These measurements confirm previously untested predictions for the threshold of kinetically locked-in transport, and demonstrate the ability of optical fractionation to sort colloidal spheres with part-per-thousand resolution on multiple characteristics simultaneously.Comment: 4 pages, 2 figures. Accepted for publication in Physical Review Letter

    Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3 / SrRuO3 bilayers

    Full text link
    Epitaxial La0.67Sr0.33MnO3 (LSMO)/ SrRuO3 (SRO) ferromagnetic bilayers have been grown on (001) SrTiO3 (STO) substrates by pulsed laser deposition with atomic layer control. We observe a shift in the magnetic hysteresis loop of the LSMO layer in the same direction as the applied biasing field (positive exchange bias). The effect is not present above the Curie temperature of the SRO layer (), and its magnitude increases rapidly as the temperature is lowered below . The direction of the shift is consistent with an antiferromagnetic exchange coupling between the ferromagnetic LSMO layer and the ferromagnetic SRO layer. We propose that atomic layer charge transfer modifies the electronic state at the interface, resulting in the observed antiferromagnetic interfacial exchange coupling.Comment: accepted to Applied Physics Letter

    Zooming in to Massive Star Birth

    Get PDF
    We present high resolution (0.2", 1000 AU) 1.3 mm ALMA observations of massive infrared dark cloud clump, G028.37+00.07-C1, thought to harbor the early stages of massive star formation. Using N2D+\rm N_2D^+(3-2) we resolve the previously identified C1-S core, separating the bulk of its emission from two nearby protostellar sources. C1-S is thus identified as a massive (50M\sim50\:M_\odot), compact (0.1\sim0.1\:pc diameter) starless core, e.g., with no signs of outflow activity. Being highly deuterated, this is a promising candidate for a pre-stellar core on the verge of collapse. An analysis of its dynamical state indicates a sub-virial velocity dispersion compared to a trans-Alfv\'enic turbulent core model. However, virial equilibrium could be achieved with sub-Alfv\'enic conditions involving 2\sim2\:mG magnetic field strengths.Comment: 19 pages, 15 figures, 4 tables, accepted by Ap

    How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Get PDF
    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.Comment: Accepted to Ap

    Putting context into organizational intervention design:Using tailored questionnaires to measure initiatives for worker well-being

    Get PDF
    Realistic evaluation emphasizes the importance of exploring the mechanisms through which organizational interventions are effected. A well-known mechanism in organizational interventions is the screening process. Standardized questionnaires, in popular use, neither consider individuals’ appraisals of working conditions nor the specific context of the workplace. Screening with items tailored to intervention contexts may overcome the limitations of standardized questionnaires. In the present study, we evaluate an approach to develop a tailored questionnaire to measure employees’ appraisals of their specific working conditions. First, we interviewed 56 employees and 17 managers and, later, developed tailored items focused on the working conditions in a postal service. In follow-up interviews, we explore participants’ experiences with the tailored questionnaire, including the development of initiatives, compared to their previous experiences with the company´s annual attitude survey that used standardized scales. Results indicated that participants felt the tailored questionnaire highlighted issues that had previously been ignored, that initiatives were easier to develop due to its specificity, and that the feedback strategy was useful in prioritizing questionnaires. Overall, it can be concluded that tailored questionnaires may be appropriate for use in organizational intervention research and more broadly that evaluations of organizational interventions need to be contextually grounded

    Different atmospheric moisture divergence responses to extreme and moderate El Niños

    Get PDF
    On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST
    corecore