806 research outputs found

    Microlensing effects of wormholes associated to blackhole spacetimes

    Full text link
    In this paper, we investigate the microlensing effects of wormholes associated to black hole spacetimes. Specifically, we work on three typical wormholes (WH): Schwarzschild WH, Kerr WH, and RN WH, as well as their blackhole correspondences. We evaluate the deflection angle upon the second order under weak field approximation using Gauss-Bonnet theorem. Then, we study their magnification with numerics. We find that the prograde case of Kerr-like metric could lead to multi-peaks of magnification when the mass part is compatible with the charge part. Moreover, the first two gentle peaks of Kerr BH are larger than the WH case by one order of magnitude, while the main peak of Kerr BHs and WHs are of the same order. For other cases, the behavior of magnification from wormholes and their corresponding blackholes is similar. Our result may shed new light on exploring compact objects through the microlensing effect.Comment: Figures are improved, discussions are improve

    Prostaglandin E2 Prevents Ovariectomy-Induced Cancellous Bone Loss in Rats

    Get PDF
    The object of this study was to determine whether prostaglandin E2, (PGE2) can prevent ovariectomy induced cancellous bone loss. Thirty-five 3-month-old female Sprague-Dawley rats were divided into two groups. The rats in the first group were ovariectomized (OVX) while the others received sham operation (sham-OVX). The OVX group was further divided into three treatment groups. The daily doses for the three groups were 0,1 and 6 mg PGE2/kg for 90 days. Bone histomorphometric analyses were performed on double-fluorescent-labeled undecalcified proximal tibial metaphysis (PTM). We confirmed that OVX induces massive cancellous bone loss (-80%) and a higher bone turnover (+143%). The new findings from the present study demonstrate that bone loss due to ovarian hormone deficiency can be prevented by a low-dose (1 mg) daily administration of PGE2. Furthermore, a higher-dose (6 mg) daily administration of PGE2 not only prevents bone loss but also adds extra bone to the proximal tibial metaphyses. PGE, at the 1-mg dose level significantly increased trabecular bone area, trabecular width, trabecular node density, density of node to node, ratio of node to free end, and thus significantly decreased trabecular separation from OVX controls. At this dose level, these same parameters did not differ significantly from sham-OVX controls. However, at the 6-mg dose level PGE2, there were significant increases in trabecular bone area, trabecular width, trabecular node density, density of node to node, and ratio of node to free end, while there was significant decrease in trabecular separation from both OVX and sham-operated controls. The changes in indices of trabecular bone microanatomical structure indicated that PGE2 prevented bone loss as well as the disconnection of existing trabeculae. In summary, PGE2, administration to OVX rats decreased bone turnover and increased bone formation parameters resulting in a positive bone balance that prevented bone loss (in both lower and higher doses) and added extra bone to metaphyses of OVX rats (in higher dose). These findings support the strategy of the use of bone stimulation agents in the prevention of estrogen depletion bone loss (postmenopausal osteoporosis)

    Tailoring silk fibroin fibrous architecture by a high‐yield electrospinning method for fast wound healing possibilities

    Get PDF
    In this study, a novel array electrospinning collector was devised to generate two distinct regenerated silk fibroin (SF) fibrous membranes: ordered and disordered. Leveraging electrostatic forces during the electrospinning process allowed precise control over the orientation of SF fiber, resulting in the creation of membranes comprising both aligned and randomly arranged fiber layers. This innovative approach resulted in the development of large‐area membranes featuring exceptional stability due to their alternating patterned structure, achievable through expansion using the collector, and improving the aligned fiber membrane mechanical properties. The study delved into exploring the potential of these membranes in augmenting wound healing efficiency. Conducting in vitro toxicity assays with adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) and normal human dermal fibroblasts (NHDFs) confirmed the biocompatibility of the SF membranes. We use dual perspectives on exploring the effects of different conditioned mediums produced by cells and structural cues of materials on NHDFs migration. The nanofibers providing the microenvironment can directly guide NHDFs migration and also affect the AD‐MSCs and NHDFs paracrine effects, which can improve the chemotaxis of NHDFs migration. The ordered membrane, in particular, exhibited pronounced effectiveness in guiding directional cell migration. This research underscores the revelation that customizable microenvironments facilitated by SF membranes optimize the paracrine products of mesenchymal stem cells and offer valuable physical cues, presenting novel prospects for enhancing wound healing efficiency

    Analysis of morphological differences in five large yellow croaker (<em>Larimichthys crocea</em>) populations

    Get PDF
    To explore the morphological and phenotypic characteristics and differences among different populations of Larimichthys crocea, traditional morphological measurements were carried out on three wild populations from Zhoushan, Xiamen and Zhanjiang and two farmed populations from Ningde and Wenzhou. Seven morphological parameters of five L. crocea populations were compared and analyzed. The results of one-way ANOVA showed significant differences in trunk and caudal stalk among the five populations. The contribution rates of the first five principal components to the total difference among different populations were 29.984%, 18.462%, 17.234%, 12.167%, and 9.904%, respectively, and the cumulative contribution rates were 87.751%. Trunk can be used to distinguish different geographic populations best. The cluster analysis results showed that the distance between wild populations was the closest, while the distance between farmed populations was far. The step discriminant method established the classification discriminant function of 5 populations. The discriminant accuracy P1 was 78.3%-92.7%, the discriminant accuracy P2 was 76.4%-96.5%, and the comprehensive recognition rate was 99.3%. The discriminant accuracy of this method was high, and it could provide a reference for the differentiation of different populations of L. crocea. This study provided basic morphological data for identifying a large yellow croaker population, protecting germplasm resources, and breeding improved varieties

    Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    Get PDF
    Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP) porous nanospheres is achieved (126.7 m2/g). PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t)). The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated
    • 

    corecore