138 research outputs found

    Synthesis Optimization of L-Aspartic acid β-hydroxamate by a novel Enzyme, β-Aspartyl-γ-glutamyl transferase

    Get PDF
    L-Aspartic acid β-hydroxamate or L-β-Aspartyl hydroxamate (BAH), water soluble- chemical compound currently obtains popularity due to its role in several important biochemical processes and to its bioactivities. The information regarding synthesis process of BAH is not available yet. Novel enzyme, β-aspartyl-γ-glutamyl transferase from Pseudomonas syringae can catalyze the transfer reaction of β-aspartyl moieties from β-aspartyl compounds to water or to hydroxylamine. In this study we describe the synthesis optimization of BAH using this novel enzyme. We prepared the L-β-aspartyl hydroxamate using L- asparagine as a donor substrate and hydroxylammonium chloride as an acceptor substrate. The effects of temperature, pH, concentrations of substrate donor and acceptor were investigated. Spectrophotometry and HPLC analyses were performed to determine the reaction products. The optimum synthesis reaction was observed in 60˚C. BAH synthesis was optimum at pH 6. The concentrations of donor and acceptor substrates affected the BAH production and the best concentrations of both substrates were 80 mM and 40 mM, respectively. The BAH production of 0.106 mM has been obtained under the optimized condition and it is approximately two-times higher than 0.047 mM produced under in standard reaction. In conclusion, biosynthesis of L-β-aspartyl hydroxamate using a novel enzyme, β- aspartyl-γ-glutamyl transferase from Pseudomonas syringae was successfully performed for the first time. Under the optimized conditions, two times higher L-β-aspartyl hydroxamate production was obtained

    Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. II: The Second Year (2009-2010)

    Full text link
    As an extension of the project in Kato et al. (2009, arXiv:0905.1757), we collected times of superhump maxima for 61 SU UMa-type dwarf novae mainly observed during the 2009-2010 season. The newly obtained data confirmed the basic findings reported in Kato et al. (2009): the presence of stages A-C, as well as the predominance of positive period derivatives during stage B in systems with superhump periods shorter than 0.07 d. There was a systematic difference in period derivatives for systems with superhump periods longer than 0.075 d between this study and Kato et al. (2009). We suggest that this difference is possibly caused by the relative lack of frequently outbursting SU UMa-type dwarf novae in this period regime in the present study. We recorded a strong beat phenomenon during the 2009 superoutburst of IY UMa. The close correlation between the beat period and superhump period suggests that the changing angular velocity of the apsidal motion of the elliptical disk is responsible for the variation of superhump periods. We also described three new WZ Sge-type objects with established early superhumps and one with likely early superhumps. We also suggest that two systems, VX For and EL UMa, are WZ Sge-type dwarf novae with multiple rebrightenings. The O-C variation in OT J213806.6+261957 suggests that the frequent absence of rebrightenings in very short-Porb objects can be a result of sustained superoutburst plateau at the epoch when usual SU UMa-type dwarf novae return to quiescence preceding a rebrightening. We also present a formulation for a variety of Bayesian extension to traditional period analyses.Comment: 63 pages, 77 figures, 1 appendix, Accepted for publication in PASJ, data correctio

    Employing Relative Entropy Techniques for Assessing Modifications in Animal Behavior

    Get PDF
    In order to make quantitative statements regarding behavior patterns in animals, it is important to establish whether new observations are statistically consistent with the animal's equilibrium behavior. For example, traumatic stress from the presence of a telemetry transmitter may modify the baseline behavior of an animal, which in turn can lead to a bias in results. From the perspective of information theory such a bias can be interpreted as the amount of information gained from a new measurement, relative to an existing equilibrium distribution. One important concept in information theory is the relative entropy, from which we develop a framework for quantifying time-dependent differences between new observations and equilibrium. We demonstrate the utility of the relative entropy by analyzing observed speed distributions of Pacific bluefin tuna, recorded within a 48-hour time span after capture and release. When the observed and equilibrium distributions are Gaussian, we show that the tuna's behavior is modified by traumatic stress, and that the resulting modification is dominated by the difference in central tendencies of the two distributions. Within a 95% confidence level, we find that the tuna's behavior is significantly altered for approximately 5 hours after release. Our analysis reveals a periodic fluctuation in speed corresponding to the moment just before sunrise on each day, a phenomenon related to the tuna's daily diving pattern that occurs in response to changes in ambient light

    Defect of Interferon γ Leads to Impaired Wound Healing through Prolonged Neutrophilic Inflammatory Response and Enhanced MMP-2 Activation.

    Get PDF
    Interferon (IFN)-γ is mainly secreted by CD4+ T helper 1 (Th1), natural killer (NK) and NKT cells after skin injury. Although IFN-γ is well known regarding its inhibitory effects on collagen synthesis by fibroblasts in vitro, information is limited regarding its role in wound healing in vivo. In the present study, we analyzed how the defect of IFN-γ affects wound healing. Full-thickness wounds were created on the backs of wild type (WT) C57BL/6 and IFN-γ-deficient (KO) mice. We analyzed the percent wound closure, wound breaking strength, accumulation of leukocytes, and expression levels of COL1A1, COL3A1, and matrix metalloproteinases (MMPs). IFN-γKO mice exhibited significant attenuation in wound closure on Day 10 and wound breaking strength on Day 14 after wound creation, characteristics that are associated with prolonged neutrophil accumulation. Expression levels of COL1A1 and COL3A1 mRNA were lower in IFN-γKO than in WT mice, whereas expression levels of MMP-2 (gelatinase) mRNA were significantly greater in IFN-γKO than in WT mice. Moreover, under neutropenic conditions created with anti-Gr-1 monoclonal antibodies, wound closure in IFN-γKO mice was recovered through low MMP-2 expression levels. These results suggest that IFN-γ may be involved in the proliferation and maturation stages of wound healing through the regulation of neutrophilic inflammatory responses

    Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt

    Get PDF
    Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60% mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1 virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A change in receptor binding affinity of the viral hemagglutinin (HA) from α2,3- to α2,6-linked sialic acid (SA) is thought to be necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics, we found that these H5 sublineages have acquired an enhanced binding affinity for α2,6 SA in combination with residual affinity for α2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1 viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to α2,6 SA, emerged during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence of new H5 sublineages with α2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in Egypt, and provided data for understanding the virus's pandemic potential

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore