36 research outputs found

    Gramicidin S identified as a potent inhibitor for cytochrome bd-type quinol oxidase

    Get PDF
    AbstractGramicidin S, a cationic cyclic decapeptide, exhibits the potent antibiotic activity through perturbation of lipid bilayers of the bacterial membrane. From the screening of natural antibiotics, we identified gramicidin S as a potent inhibitor for cytochrome bd-type quinol oxidase from Escherichia coli. We found that gramicidin S inhibited the oxidase with IC50 of 3.5μM by decreasing Vmax and the affinity for substrates but showed the stimulatory effect at low concentrations. Our findings would provide a new insight into the development of gramicidin S analogs, which do not share the target and mechanism with conventional antibiotics

    Multidrug Sensitive Yeast Strains, Useful Tools for Chemical Genetics

    Get PDF
    The budding yeast Saccharomyces cerevisiae is a useful eukaryote model organism for application to chemical biology studies, for example, drug screening, drug evaluation, and target identification. To use yeast for chemical biology research, however, it has been necessary to construct yeast strains suitable for various compounds because of their high drug resistance. Hence, the deletion of all multidrug resistance genes except for those that are important for viability and for genetic experiments/manipulation could increase the drug sensitivity without influencing the transformation, mating, or sporulation efficiency. There are two major factors conferring multidrug resistance in S. cerevisiae: one is the drug efflux system and the other is the permeability barrier. We therefore constructed a strain which shows high sensitivity to multiple drugs by disrupting the drug efflux system using ATP-binding cassette transporters and suppressing the membrane barrier system by introducing an ERG6-inducible system. In this review, we discuss the construction of our multidrug-sensitive yeast strains and their application in chemical biology

    Characterization and validation of Entamoeba histolytica pantothenate kinase as a novel anti-amebic drug target

    Get PDF
    The Coenzyme A (CoA), as a cofactor involved in >100 metabolic reactions, is essential to the basic biochemistry of life. Here, we investigated the CoA biosynthetic pathway of Entamoeba histolytica (E. histolytica), an enteric protozoan parasite responsible for human amebiasis. We identified four key enzymes involved in the CoA pathway: pantothenate kinase (PanK, EC 2.7.1.33), bifunctional phosphopantothenate-cysteine ligase/decarboxylase (PPCS-PPCDC), phosphopantetheine adenylyltransferase (PPAT) and dephospho-CoA kinase (DPCK). Cytosolic enzyme PanK, was selected for further biochemical, genetic, and phylogenetic characterization. Since E. histolytica PanK (EhPanK) is physiologically important and sufficiently divergent from its human orthologs, this enzyme represents an attractive target for the development of novel anti-amebic chemotherapies. Epigenetic gene silencing of PanK resulted in a significant reduction of PanK activity, intracellular CoA concentrations, and growth retardation in vitro, reinforcing the importance of this gene in E. histolytica. Furthermore, we screened the Kitasato Natural Products Library for inhibitors of recombinant EhPanK, and identified 14 such compounds. One compound demonstrated moderate inhibition of PanK activity and cell growth at a low concentration, as well as differential toxicity towards E. histolytica and human cells

    Biochemical Studies of Mitochondrial Malate: Quinone Oxidoreductase from Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis and infects almost one-third of the global human population. A lack of effective drugs and vaccines and the emergence of drug resistant parasites highlight the need for the development of new drugs. The mitochondrial electron transport chain (ETC) is an essential pathway for energy metabolism and the survival of T. gondii. In apicomplexan parasites, malate:quinone oxidoreductase (MQO) is a monotopic membrane protein belonging to the ETC and a key member of the tricarboxylic acid cycle, and has recently been suggested to play a role in the fumarate cycle, which is required for the cytosolic purine salvage pathway. In T. gondii, a putative MQO (TgMQO) is expressed in tachyzoite and bradyzoite stages and is considered to be a potential drug target since its orthologue is not conserved in mammalian hosts. As a first step towards the evaluation of TgMQO as a drug target candidate, in this study, we developed a new expression system for TgMQO in FN102(DE3)TAO, a strain deficient in respiratory cytochromes and dependent on an alternative oxidase. This system allowed, for the first time, the expression and purification of a mitochondrial MQO family enzyme, which was used for steady-state kinetics and substrate specificity analyses. Ferulenol, the only known MQO inhibitor, also inhibited TgMQO at IC50 of 0.822 μM, and displayed different inhibition kinetics compared to Plasmodium falciparum MQO. Furthermore, our analysis indicated the presence of a third binding site for ferulenol that is distinct from the ubiquinone and malate sites

    Identification of novel antiviral of fungus-derived brefeldin A against dengue viruses

    Get PDF
    Microbial natural products possess a wide range of biological and biochemical potential. Among them, fungal secondary metabolites are one of the most important sources for discovering new drugs or lead compounds. In the present study, we explored substances produced by the strain Penicillium sp. FKI-7127 for its antiviral activity. We identified brefeldin A as a novel antiviral agent against dengue viruses. The inhibitory effect of brefeldin A was confirmed by virus titer and immunofluorescence assay. Brefeldin A inhibited dengue viruses regardless of serotypes and other related viruses including Zika virus and Japanese encephalitis virus. Time-of-addition study showed that brefeldin A exerts its antiviral effect at an early stage of the dengue virus (DENV) life cycle. These studies demonstrate that (i) brefeldin A could be used as a lead compound for drug development of anti-DENV and other related viruses and (ii) fungal metabolites are a potential and valuable source for dengue virus drug discovery

    Antiparasitic agents produced by microorganisms

    No full text

    Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab

    No full text
    Variations in seismic velocity near the subducting slab provide constraints on the thermal structure and the distribution of hydrous minerals and water in a subduction zone. We investigated the seismological structure in the upper mantle beneath Japan using both radial and transverse receiver functions (RFs). Radial RF can image horizontal layers of velocity contrast while transverse RF can image dipping layers. The combination allows us to simultaneously image both horizontal and dipping velocity discontinuities. We investigated the records of 45 teleseismic events observed with tiltmeters at 678 Hi-net stations. The frequency band we used is from 0.02 to 0.16 Hz. The resultant RF image shows an elevated 410 km discontinuity and, more importantly, the top surface of the Pacific slab down to below the 410 km discontinuity. With forward modeling, we determined that the mantle wedge is about 8% slower in shear-wave speed than the subducting slab at depths deeper than 200 km. The seismic velocity contrast is presumably caused by a sequence of hydrous minerals at the base of the mantle wedge which receives water released by dehydration reactions in the oceanic crust. We employed numerical simulations to determine the distribution of water in and around the subducting slab. The result suggests that hydrous minerals are continuously stable above the subducting slab in relatively cool conditions, and carry water to the mantle transition zone

    Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    No full text
    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control
    corecore