248 research outputs found

    Cisplatin, rather than oxaliplatin, increases paracellular permeability of LLC-PK1 cells via activating protein kinase C

    Get PDF
    The clinical use of cisplatin is limited by its adverse events, particularly serious nephrotoxicity. It was clarified that cisplatin is transported by a kidney-specific organic cation transporter (OCT2). OCT2 also mediates the uptake of oxaliplatin into renal proximal tubular cells; however, this agent does not lead nephrotoxicity. In the present study, we carried out comparative experiments with cisplatin and oxaliplatin using porcine kidney LLC-PK1 cell monolayers. In the fluorescein-labeled isothiocyanate-dextran flux assay, the basolateral application of cisplatin, but not oxaliplatin, resulted in an increase in the paracellular permeability of cell monolayers. Even though the cellular accumulation of platinum at 50 μM oxaliplatin could reach the same level at 30 μM cisplatin, oxaliplatin did not induce hyper-permeability in cell monolayers. Cisplatin, but not oxaliplatin, significantly activated PKC. In addition, the combination of PKC inhibitors recovered the increase in paracellular permeability. In conclusion, pharmacodynamic mechanisms via PKC could explain the difference in nephrotoxicity between cisplatin and oxaliplatin

    Abstraction Model of Probing and DFA Attacks on Block Ciphers

    Get PDF
    A thread of physical attacks that try to obtain secret information from cryptographic modules has been of academic and practical interest. One of the concerns is determining its efficiency, e.g., the number of attack trials to recover the secret key. However, the accurate estimation of the attack efficiency is generally expensive because of the complexity of the physical attack on a cryptographic algorithm. Based on this background, in this study, we propose a new abstraction model for evaluating the attack efficiency of the probing and DFA attacks. The proposed model includes an abstracted attack target and attacker to determine the amount of leaked information obtained in a single attack trial. We can adapt the model flexibly to various attack scenarios and can get the attack efficiency quickly and precisely. In the probing attack on AES, the difference in the attack efficiency is only approximately 0.3% between the model and experimental values, whereas that of a previous model is approximately 16%. We also apply the probing attack on DES, and the results show that DES has a high resistance to the probing attack. Moreover, the proposed model works accurately also for the DFA attack on AES

    Oxaliplatin-induced neurotoxicity involves TRPM8 in the mechanism of acute hypersensitivity to cold sensation

    Get PDF
    Oxaliplatin-induced peripheral neurotoxicity (OPN) is commonly associated with peripheral hypersensitivity to cold sensations (CS) but the mechanism is unknown. We hypothesized that the transient receptor potential melastatin 8 (TRPM8), a putative cold and menthol receptor, contributes to oxaliplatin cold hypersensitivity. To determine whether the TRPM8 is involved in acute OPN, varying concentrations of menthol were topically applied to the tongues of healthy subjects (n = 40) and colorectal cancer patients (n = 36) before and after oxaliplatin administration. The minimum concentration of menthol to evoke CS at the menthol application site was determined as the CS detection threshold (CDT). In healthy subjects, the mean CDT was 0.068. Sex and age differences were not found in the CDT. In advanced colorectal cancer patients, the mean CDT significantly decreased from 0.067% to 0.028% (P = 0.0039) after the first course of oxaliplatin infusions, and this marked CS occurred in patients who had grade 1 or less neurotoxicity, and grade 2 neurotoxicity, but not in those with grade 3 neurotoxicity. Further, the mean baseline CDT in oxaliplatin-treated patients was significantly higher than that of chemotherapy-naïve patients and healthy subjects (0.151% vs. 0.066%, P = 0.0225), suggesting that acute sensory changes may be concealed by progressive abnormalities in sensory axons in severe neurotoxicity, and that TRPM8 is subject to desensitization on repeat stimulation. Our study demonstrates the feasibility of undertaking CDT test in a clinical setting to facilitate the identification of early neurotoxicity. Moreover, our results indicate potential TRPM8 involvement in acute OPN

    Effect of riboflavin deficiency on development of the cerebral cortex in Slc52a3 knockout mice

    Get PDF
    Riboflavin transporter 3 (RFVT3), encoded by the SLC52A3 gene, is important for riboflavin homeostasis in the small intestine, kidney, and placenta. Our previous study demonstrated that Slc52a3 knockout (Slc52a3−/−) mice exhibited neonatal lethality and metabolic disorder due to riboflavin deficiency. Here, we investigated the influence of Slc52a3 gene disruption on brain development using Slc52a3−/− embryos. Slc52a3−/− mice at postnatal day 0 showed hypoplasia of the brain and reduced thickness of cortical layers. At embryonic day 13.5, the formation of Tuj1+ neurons and Tbr2+ intermediate neural progenitors was significantly decreased; no significant difference was observed in the total number and proliferative rate of Pax6+ radial glia. Importantly, the hypoplastic phenotype was rescued upon riboflavin supplementation. Thus, it can be concluded that RFVT3 contributes to riboflavin homeostasis in embryos and that riboflavin itself is required during embryonic development of the cerebral cortex in mice

    Pharmacist-physician collaborative care for outpatients with left ventricular assist devices using a cloud-based home medical management information-sharing system: a case report

    Get PDF
    [Background] The standard anticoagulation therapy for patients implanted with left ventricular assist devices (LVADs) includes warfarin therapy. We developed a cloud-based home medical management information-sharing system named as LVAD@home. The LVAD@home system is an application designed to be used on iPad tablet computers. This system enables the sharing of daily information between a patient and care providers in real time. In this study, we reported cases of outpatients with LVADs using this system to manage anticoagulation therapy. [Case presentation] The patient, a man in his 40s with end-stage heart failure owing to non-ischemic dilated cardiomyopathy, underwent LVAD implantation and warfarin was started on postoperative day 1. He started to use LVAD@home to manage warfarin therapy after discharge (postoperative day 47). He sent his data to care providers daily. By using this system, the pharmacist observed his signs of reduced dietary intake 179 days after discharge, and after consulting the physician, told the patient to change the timing of the next measurement earlier than usual. On the next day, the prothrombin time-international normalized ratio increased from 2.0 to 3.0, and thus the dose was decreased by 0.5 mg. Four patients used this system to monitor warfarin therapy from October 2015 to March 2018. In these patients, the time in therapeutic range was 90.1 ± 1.3, which was higher than that observed in previous studies. Additionally, there were no thromboembolic events or bleeding events. [Conclusions] The cloud-based home management system can be applied to share real-time patient information of factors, including dietary intake that interact with warfarin. It can help to improve long-term anticoagulation outcomes in patients implanted with LVAD

    Conditional Deletion of Smad1 Ameliorates Glomerular Injury in Progressive Glomerulonephritis

    Get PDF
    Matrix expansion and cell proliferation are concomitantly observed in various glomerular injuries. However, the molecular mechanisms responsible for these changes have not been fully elucidated. We have reported that Smad1 is a key signalling molecule that regulates the transcription of type IV collagen (Col4) in mesangial matrix expansion and is thereby involved in glomerular injury in an acute model of glomerulonephritis. In this study, we addressed the role of Smad1 signalling in accelerated nephrotoxic nephritis (NTN), a model of progressive glomerulonephritis, using conditional deletion of Smad1 in Rosa26CreERT2 mice (Smad1-CKO). Mesangial matrix expansion in the Smad1-CKO mice with NTN was significantly inhibited compared with that in wild type mice with NTN, which was consistent with the decrease in Col4 expression level. On the other hand, STAT3 activation and cell proliferation were not influenced by Smad1 deletion in the NTN model. Therefore, we investigated another factor that activates cell proliferation in the absence of Smad1. Id2 induced VEGF secretion and subsequent STAT3 activation, independently of Smad1 expression in mouse mesangial cells. Here we show that Smad1 plays an important role in the development of glomerular injury without affecting cell proliferation, in progressive glomerulonephritis

    Smad1の条件付き遺伝子削除は進行性糸球体腎炎による糸球体傷害を改善する

    Get PDF
    Matrix expansion and cell proliferation are concomitantly observed in various glomerular injuries. However, the molecular mechanisms responsible for these changes have not been fully elucidated. We have reported that Smad1 is a key signalling molecule that regulates the transcription of type IV collagen (Col4) in mesangial matrix expansion and is thereby involved in glomerular injury in an acute model of glomerulonephritis. In this study, we addressed the role of Smad1 signalling in accelerated nephrotoxic nephritis (NTN), a model of progressive glomerulonephritis, using conditional deletion of Smad1 in Rosa26CreERT2 mice (Smad1-CKO). Mesangial matrix expansion in the Smad1-CKO mice with NTN was significantly inhibited compared with that in wild type mice with NTN, which was consistent with the decrease in Col4 expression level. On the other hand, STAT3 activation and cell proliferation were not influenced by Smad1 deletion in the NTN model. Therefore, we investigated another factor that activates cell proliferation in the absence of Smad1. Id2 induced VEGF secretion and subsequent STAT3 activation, independently of Smad1 expression in mouse mesangial cells. Here we show that Smad1 plays an important role in the development of glomerular injury without affecting cell proliferation, in progressive glomerulonephritis
    corecore