11 research outputs found

    KIAA1018/FAN1ヌクレアーゼはDNA鎖間架橋剤により誘導されるゲノム不安定性に対して細胞を保護する

    Get PDF
    Kazunori Yoshikiyo, Katja Kratz, Kouji Hirota, Kana Nishihara, Minoru Takata, Hitoshi Kurumizaka, Satoshi Horimoto, Shunichi Takeda, and Josef Jiricny "KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents" PNAS 2010 107 (50) 21553-21557; published ahead of print November 29, 2010, doi:10.1073/pnas.1011081107京都大学0048新制・論文博士博士(医学)乙第12772号論医博第2063号新制||医||1000(附属図書館)30755(主査)教授 小松 賢志, 教授 小川 誠司, 教授 松本 智裕学位規則第4条第2項該当Doctor of Medical ScienceKyoto UniversityDFA

    The dynamics of mucosal-associated invariant T cells in multiple sclerosis

    Get PDF
    Background: Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelination, gliosis and axonal loss in the Central Nervous System. Although the etiology of the disease has remained enigmatic, recent studies have suggested a role of the innate-like T cells, called Mucosal Associated Invariant T cells (MAITs) in the pathophysiology. In the present study, we have analyzed the relative frequency of MAITs and the expression of the cell surface antigens in MAITs to seek a possible link to the disease. Results: There was little difference in the frequency of total MAITs between healthy donors (HDs) and untreated MS patients, whereas the latter harbored more CD8lo/neg (DN) MAITs concomitant with a decrease in CD8high MAITs and in CD4 MAITs compared with those in HDs. While the expression of CCR5, CCR6, CD95, CD127, and CD150 has increased in untreated subjects compared with that in HDs, CD45RO has declined in untreated subjects in both DN MAITs and CD8hi MAITs. FTY720 therapy has increased the relative frequency of total MAITs in a time-dependent fashion up to 2 years. Intriguingly, FTY720 therapy for 3 years reversed the above phenotype, engendering more CD8high MAITs accompanied with decreased DN MAITs. FTY720 therapy affected the cytokine production from CD4 T cells and also enhanced the relative frequency of cells producing both TNF-α and IFN-γ from MAITs, CD8 T cells, and CD4 T cells compared with that in untreated subjects. Conclusions: FTY 720 therapy enhanced the relative frequency of MAITs in MS patients in a time-dependent manner. Although the expression of CD8 in MAITs has been affected early by FTY720, longer treatment has reversed the phenotypic change. These data demonstrated that FTY720 induced dynamic change in the relative frequency and in the phenotype of MAITs in MS

    KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents

    No full text
    Fanconi anemia (FA) is a rare genetic disease characterized by congenital defects, bone marrow failure, chromosomal instability, and cancer susceptibility. One hallmark of cells from FA patients is hypersensitivity to interstrand cross-linking agents, such as the chemotherapeutics cisplatin and mitomycin C (MMC). We have recently characterized a FANCD2/FANCI-associated nuclease, KIAA1018/FAN1, the depletion of which sensitizes human cells to these agents. However, as the down-regulation of FAN1 in human cells was mediated by siRNA and thus only transient, we were unable to study the long-term effects of FAN1 loss on chromosomal stability. We now describe the generation of chicken DT40 B cells, in which the FAN1 locus was disrupted by gene targeting. FAN1-null cells are highly sensitive to cisplatin and MMC, but not to ionizing or UV radiation, methyl methanesulfonate, or camptothecin. The cells do not display elevated sister chromatid exchange frequencies, either sporadic or MMC-induced. Interestingly, MMC treatment causes chromosomal instability that is quantitatively, but not qualitatively, comparable to that seen in FA cells. This finding, coupled with evidence showing that DT40 cells deficient in both FAN1 and FANCC, or FAN1 and FANCJ, exhibited increased sensitivity to cisplatin compared with cells lacking only FAN1, suggests that, despite its association with FANCD2/FANCI, FAN1 in DT40 cells participates in the processing of damage induced by interstrand cross-linking-generating agents also independently of the classical FA pathway

    ASB20123: A novel C-type natriuretic peptide derivative for treatment of growth failure and dwarfism.

    No full text
    C-type natriuretic peptide (CNP) and its receptor natriuretic peptide receptor B (NPR-B) are physiological potent positive regulators of endochondral bone growth; therefore, the CNP/NPR-B signaling pathway is one of the most promising therapeutic targets for treating growth failure and dwarfism. In this article, we summarized the pharmacological properties of a novel CNP analog peptide ASB20123 as a therapeutic agent for short stature. ASB20123, one of the CNP/ghrelin chimeric peptides, is composed of CNP(1-22) and human ghrelin(12-28, E17D). Compared to CNP(1-22), ASB20123 showed similar agonist activity for NPR-B and improved biokinetics with a longer plasma half-life in rats. In addition, the distribution of ASB20123 to the cartilage was higher than that of CNP(1-22) after single subcutaneous (sc) injection to mice. These results suggested that the C-terminal part of ghrelin, which has clusters of basic amino acid residues and a BX7B motif, might contribute to the retention of ASB20123 in the extracellular matrix of the growth plate. Multiple sc doses of ASB20123 potently stimulated skeletal growth in rats in a dose-dependent manner, and sc infusion was more effective than bolus injection at the same dose. Our data indicated that high plasma levels of ASB20123 would not necessarily be required for bone growth acceleration. Thus, pharmaceutical formulation approaches for sustained-release dosage forms to allow chronic exposure to ASB20123 might be suitable to ensure drug effectiveness and safety

    Multimetalâ Substituted Epsilonâ Iron Oxide ϵâ Ga0.31Ti0.05Co0.05Fe1.59O3 for Nextâ Generation Magnetic Recording Tape in the Bigâ Data Era

    Full text link
    From the viewpoints of large capacity, longâ term guarantee, and low cost, interest in magnetic recording tapes has undergone a revival as an archive storage media for big data. Herein, we prepared a new series of metalâ substituted ϵâ Fe2O3, ϵâ GaIII0.31TiIV0.05CoII0.05FeIII1.59O3, nanoparticles with an average size of 18â nm. Ga, Ti, and Co cations tune the magnetic properties of ϵâ Fe2O3 to the specifications demanded for a magnetic recording tape. The coercive field was tuned to 2.7â kOe by introduction of singleâ ion anisotropy on CoII (S=3/2) along the câ axis. The saturation magnetization was increased by 44â % with GaIII (S=0) and TiIV (S=0) substitution through the enhancement of positive sublattice magnetizations. The magnetic tape media was fabricated using an actual production line and showed a very sharp signal response and a remarkably high signalâ toâ noise ratio compared to the currently used magnetic tape.For the record: A new series of metalâ substituted ϵâ Fe2O3 nanoparticles, ϵâ GaIII0.31TiIV0.05CoII0.05FeIII1.59O3, with an average size of 18â nm was prepared. The Ga, Ti, and Co cations tune the magnetic properties of ϵâ Fe2O3 to the specifications demanded for a magnetic recording tape. The fabricated magnetic tape showed a remarkably high signalâ toâ noise ratio. This series of materials should be applicable for data storage in the bigâ data era.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137217/1/anie201604647_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137217/2/anie201604647.pd

    The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ

    Get PDF
    The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases

    Exogenous C-type natriuretic peptide restores normal growth and prevents early growth plate closure in its deficient rats.

    No full text
    Signaling by C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B, is a pivotal stimulator of endochondral bone growth. We recently developed CNP knockout (KO) rats that exhibit impaired skeletal growth with early growth plate closure. In the current study, we further characterized the phenotype and growth plate morphology in CNP-KO rats, and the effects of exogenous CNP in rats. We used CNP-53, an endogenous form of CNP consisting of 53 amino acids, and administered it for four weeks by continuous subcutaneous infusion at 0.15 or 0.5 mg/kg/day to four-week old CNP-KO and littermate wild type (WT) rats. We demonstrated that CNP-KO rats were useful as a reproducible animal model for skeletal dysplasia, due to their impairment in endochondral bone growth. There was no significant difference in plasma bone-turnover markers between the CNP-KO and WT rats. At eight weeks of age, growth plate closure was observed in the distal end of the tibia and the calcaneus of CNP-KO rats. Continuous subcutaneous infusion of CNP-53 significantly, and in a dose-dependent manner, stimulated skeletal growth in CNP-KO and WT rats, with CNP-KO rats being more sensitive to the treatment. CNP-53 also normalized the length of long bones and the growth plate thickness, and prevented growth plate closure in the CNP-KO rats. Using organ culture experiment of fetal rat tibia, gene set enrichment analysis indicated that CNP might have a negative influence on mitogen activated protein kinase signaling cascades in chondrocyte. Our results indicated that CNP-KO rats might be a valuable animal model for investigating growth plate physiology and the mechanism of growth plate closure, and that CNP-53, or its analog, may have the potential to promote growth and to prevent early growth plate closure in the short stature
    corecore