121 research outputs found

    Allowed slepton intergenerational mixing in light of light element abundances

    Full text link
    We studied allowed region on the intergenerational mixing parameters of sleptons from a viewpoint of big-bang nucleosynthesis in a slepton-neutralino coannihilation scenario. In this scenario, 7^7Li and 6^6Li problems can be solved by considering exotic reactions caused by bound-state effects with a long-lived slepton. Light element abundances are calculated as functions of the relic density and lifetime of the slepton which considerably depend on the intergenerational mixing parameters. Compared with observational light element abundances, we obtain allowed regions on the intergenerational mixing. Ratio of selectron component to stau component, cec_e, is allowed in 2×1011ce2×1092\times 10^{-11} \lesssim c_e \lesssim 2\times 10^{-9} with solving both the 7^7Li and 6^6Li problems. Similarly, the ratio for smuon, cμc_{\mu}, is allowed in 107cμ5×105%2\times 10^{-7} \lesssim c_{\mu} \lesssim 5\times 10^{-5} for mass difference between slepton and neutralino, which is smaller than muon mass, and %10^{-11}\lesssim c_{\mu} \lesssim 2\times 10^{-10} for the mass difference in range between muon mass and 125 MeV. We also discuss collider signatures of the slepton decays. We find characteristic double peaks in momentum distribution of event number of the slepton decays with allowed mixing parameters. Discoveries of the double peaks at future collider experiments should confirm our scenario.Comment: 10 pages, 6 figure

    Stau relic density at the Big-Bang nucleosynthesis era consistent with the abundance of the light element nuclei in the coannihilation scenario

    Full text link
    We calculate the relic density of stau at the beginning of the Big-Bang Nucleosynthesis (BBN) era in the coannihilation scenario of minimal supersymmetric standard model (MSSM). In this scenario, stau can be long-lived and form bound states with nuclei. We put constraints on the parameter space of MSSM by connecting the calculation of the relic density of stau to the observation of the light elements abundance, which strongly depends on the relic density of stau. Consistency between the theoretical prediction and the observational result, both of the dark matter abundance and the light elements abundance, requires the mass difference between the lighter stau and the lightest neutralino to be around 100MeV, the stau mass to be 300 -- 400 GeV, and the mixing angle of the left and right-handed staus to be sinθτ=(0.651)\sin\theta_{\tau} = (0.65 \textrm{--} 1).Comment: 9 pages, 5 figures, figure 5 correcte

    Possible solution to the 7^7Li problem by the long lived stau

    Full text link
    Modification of standard big-bang nucleosynthesis is considered in the minimal supersymmetric standard model to resolve the excessive theoretical prediction of the abundance of primordial lithium 7. We focus on the stau as a next-lightest superparticle, which is long lived due to its small mass difference with the lightest superparticle. It provides a number of additional decay processes of 7Li\mathrm{^{7}Li} and 7Be\mathrm{^{7}Be}. A particularly important process is the internal conversion in the stau-nucleus bound state, which destroys the 7Li\mathrm{^{7}Li} and 7Be\mathrm{^{7}Be} effectively. We show that the modification can lead to a prediction consistent with the observed abundance of 7Li\mathrm{^{7}Li}.Comment: 6 pages, 5 figure

    Big-bang nucleosynthesis with a long-lived charged massive particle including 4^4He spallation processes

    Full text link
    We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.Comment: 12 pages, 4 figures, 1 table, references added, all figures correcte

    Discovery of gene expression-based pharmacodynamic biomarker for a p53 context-specific anti-tumor drug Wee1 inhibitor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wee1 is a tyrosine kinase regulating S-G2 cell cycle transition through the inactivating phosphorylation of CDC2. The inhibition of Wee1 kinase by a selective small molecule inhibitor significantly enhances the anti-tumor efficacy of DNA damaging agents, specifically in p53 negative tumors by abrogating S-G2 checkpoints, while normal cells with wild-type p53 are not severely damaged due to the intact function of the G1 checkpoint mediated by p53. Since the measurement of mRNA expression requires a very small amount of biopsy tissue and is highly quantitative, the development of a pharmacodynamic (PD) biomarker leveraging mRNA expression is eagerly anticipated in order to estimate target engagement of anti-cancer agents.</p> <p>Results</p> <p>In order to find the Wee1 inhibition signature, mRNA expression profiling was first performed in both p53 positive and negative cancer cell lines treated with gemcitabine and a Wee1 inhibitor, MK-1775. We next carried out mRNA expression profiling of skin samples derived from xenograft models treated with the Wee1 inhibitor to identify a Wee1 inhibitor-regulatory gene set. Then, the genes that were commonly modulated in both cancer cell lines and rat skin samples were extracted as a Wee1 inhibition signature that could potentially be used as a PD biomarker independent of p53 status. The expression of the Wee1 inhibition signature was found to be regulated in a dose-dependent manner by the Wee1 inhibitor, and was significantly correlated with the inhibition level of a direct substrate, phosphorylated-CDC2. Individual genes in this Wee1 inhibition signature are known to regulate S-G2 cell cycle progression or checkpoints, which is consistent with the mode-of-action of the Wee1 inhibitor.</p> <p>Conclusion</p> <p>We report here the identification of an mRNA gene signature that was specifically changed by gemcitabine and Wee1 inhibitor combination treatment by molecular profiling. Given the common regulation of expression in both xenograft tumors and animal skin samples, the data suggest that the Wee1 inhibition gene signature might be utilized as a quantitative PD biomarker in both tumors and surrogate tissues, such as skin and hair follicles, in human clinical trials.</p
    corecore