129 research outputs found

    The Standard Model Gauge Symmetry from Higher-Rank Unified Groups in Grand Gauge-Higgs Unification Models

    Full text link
    We study grand unified models in the five-dimensional space-time where the extra dimension is compactified on S1/Z2S^1/Z_2. The spontaneous breaking of unified gauge symmetries is achieved via vacuum expectation values of the extra-dimensional components of gauge fields. We derive one-loop effective potentials for the zero modes of the gauge fields in SU(7), SU(8), SO(10), and E6E_6 models. In each model, the rank of the residual gauge symmetry that respects the boundary condition imposed at the orbifold fixed points is higher than that of the standard model. We verify that the residual symmetry is broken to the standard model gauge symmetry at the global minima of the effective potential for certain sets of bulk fermion fields in each model.Comment: 34 pages, 1 figure, clarifications added in Sec. 6, published versio

    Multi-Higgs Mass Spectrum in Gauge-Higgs Unification

    Full text link
    We study an SU(2) supersymmetric gauge model in a framework of gauge-Higgs unification. Multi-Higgs spectrum appears in the model at low energy. We develop a useful perturbative approximation scheme for evaluating effective potential to study the multi-Higgs mass spectrum. We find that both tree-massless and massive Higgs scalars obtain mass corrections of similar size from finite parts of the loop effects. The corrections modify multi-Higgs mass spectrum, and hence, the loop effects are significant in view of future verifications of the gauge-Higgs unification scenario in high-energy experiments.Comment: 32 pages; typos corrected and a few comments added, published versio

    Consistent map building in petrochemical complexes for firefighter robots using SLAM based on GPS and LIDAR

    Get PDF
    The objective of this study was to achieve simultaneous localization and mapping (SLAM) of firefighter robots for petrochemical complexes. Consistency of the SLAM map is important because human operators compare the map with aerial images and identify target positions on the map. The global positioning system (GPS) enables increased consistency. Therefore, this paper describes two Rao-Blackwellized particle filters (RBPFs) based on GPS and light detection and ranging (LIDAR) as SLAM solutions. Fast-SLAM 1.0 and Fast-SLAM 2.0 were used in grid maps for RBPFs in this study. We herein propose the use of Fast-SLAM to combine GPS and LIDAR. The difference between the original Fast-SLAM and the proposed method is the use of the log-likelihood function of GPS; the proposed combination method is implemented using a probabilistic mathematics formulation. The proposed methods were evaluated using sensor data measured in a real petrochemical complex in Japan ranging in size from 550–380 m. RTK-GPS data was used for the GPS measurement and had an availability of 56%. Our results showed that Fast-SLAM 2.0 based on GPS and LIDAR in a dense grid map produced the best results. There was significant improvement in alignment to aerial data, and the mean square root error was 0.65 m. To evaluate the mapping consistency, accurate 3D point cloud data measured by Faro Focus 3D (± 3 mm) was used as the ground truth. Building sizes were compared; the minimum mean errors were 0.17 and 0.08 m for the oil refinery and management building area and the area of a sparse building layout with large oil tanks, respectively. Consequently, a consistent map, which was also consistent with an aerial map (from Google Maps), was built by Fast-SLAM 1.0 and 2.0 based on GPS and LIDAR. Our method reproduced map consistency results for ten runs with a variance of ± 0.3 m. Our method reproduced map consistency results with a global accuracy of 0.52 m in a low RTK-Fix-GPS environment, which was a factory with a building layout similar to petrochemical complexes with 20.9% of RTK-Fix-GPS data availability

    Complete remission of diabetes with a transient HDAC inhibitor and insulin in streptozotocin mice

    Get PDF
    Despite the growing epidemic worldwide, diabetes is an incurable disease. We have been focusing on why diabetes manifests refractoriness to any therapy. We recently found that abnormal bone marrow-derived cells (BMDCs), namely, Vcam-1+ST-HSCs, was a key mechanism for diabetic complications. We then hypothesize that those aberrant BMDCs sustainedly impair pancreatic β cells. Here we show that eliminating abnormal BMDCs using bone marrow transplantation results in controlling serum glucose in diabetic mice, in which normoglycemia is sustained even after cessation of insulin therapy. Alternatively, abnormal BMDCs exhibiting epigenetic alterations are treated with an HDAC inhibitor, givinostat, in diabetic mice. As a result, those mice are normoglycemic along with restored insulin secretion even following the cessation of both insulin and givinostat. Diabetic cell fusion between abnormal BMDCs and resident cells is significantly blocked by the combination therapy in the pancreatic islets and thymus while surgical ablation of the thymus completely eliminates therapeutic protection in diabetic mice. In conclusion, diabetes is an epigenetic stem cell disorder with thymic disturbances. The combination may be applied to patients aiming at complete remission from diabetes in clinical medicine.journal articl

    Consistent map building in petrochemical complexes for frefghter robots using SLAM based on GPS and LIDAR

    Get PDF
    The objective of this study was to achieve simultaneous localization and mapping (SLAM) of frefghter robots for petrochemical complexes. Consistency of the SLAM map is important because human operators compare the map with aerial images and identify target positions on the map. The global positioning system (GPS) enables increased consistency. Therefore, this paper describes two Rao-Blackwellized particle flters (RBPFs) based on GPS and light detection and ranging (LIDAR) as SLAM solutions. Fast-SLAM 1.0 and Fast-SLAM 2.0 were used in grid maps for RBPFs in this study. We herein propose the use of Fast-SLAM to combine GPS and LIDAR. The diference between the original FastSLAM and the proposed method is the use of the log-likelihood function of GPS; the proposed combination method is implemented using a probabilistic mathematics formulation. The proposed methods were evaluated using sensor data measured in a real petrochemical complex in Japan ranging in size from 550–380 m. RTK-GPS data was used for the GPS measurement and had an availability of 56%. Our results showed that Fast-SLAM 2.0 based on GPS and LIDAR in a dense grid map produced the best results. There was signifcant improvement in alignment to aerial data, and the mean square root error was 0.65 m. To evaluate the mapping consistency, accurate 3D point cloud data measured by Faro Focus 3D (± 3 mm) was used as the ground truth. Building sizes were compared; the minimum mean errors were 0.17 and 0.08 m for the oil refnery and management building area and the area of a sparse building layout with large oil tanks, respectively. Consequently, a consistent map, which was also consistent with an aerial map (from Google Maps), was built by Fast-SLAM 1.0 and 2.0 based on GPS and LIDAR. Our method reproduced map consistency results for ten runs with a variance of ± 0.3 m. Our method reproduced map consistency results with a global accuracy of 0.52 m in a low RTK-Fix-GPS environment, which was a factory with a building layout similar to petrochemical complexes with 20.9% of RTK-Fix-GPS data availability

    Restricting quark matter models by gravitational wave observation

    Full text link
    We consider the possibilities for obtaining information about the equation of state for quark matter by using future direct observational data on gravitational waves. We study the nonradial oscillations of both fluid and spacetime modes of pure quark stars. If we observe the ff and the lowest wIIw_{\rm II} modes from quark stars, by using the simultaneously obtained radiation radius we can constrain the bag constant BB with reasonable accuracy, independently of the ss quark mass.Comment: To appear in Phys. Rev.

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    ヨウジ ヲ タイショウ ト シタ カンキョウ キョウイク プログラム ノ ココロミ ―トウキョウ ノウギョウ ダイガク イセハラ ノウジョウ ヲ ジレイ ト シテー

    Get PDF
    本研究では,東京農業大学農学分野の教員・技術員と幼稚園教諭とが連携し,野菜や果樹栽培の教育研究を活かした環境教育プログラムを試みた。本研究では,プログラムのねらいに応じて伊勢原農場内で教育素材を選定し,環境教育プログラムを実施した。環境教育プログラムでは,ステビア,レモングラス,コキアを五感で体験し植物の用途や効用を学ぶ環境教育プログラムを実施した。加えて,幼児が日常生活で親しんでいる野菜・果樹としてブトウ,ブルーベリー,ミニトマトの栽培技術や品種の違いを学ぶ環境教育プログラムを実施した。本プログラムの教育効果として,伊勢原農場の多様な果樹・野菜とその栽培技術は幼児たちに身近な野菜や果樹への発見,楽しさ,感動を与え,観察した物事を記録できる観察力や理解力の向上を確認できた。In this research, faculty members and technical engineers from Tokyo University of Agriculture have conducted a trial environmental education program in cooperation with the teachers of the Seijo Kindergarten utilizing vegetable and fruit cultivation related educational research. Specifically, the objectives besides holding the actual educational event was to clarify the purpose of the educational program and to select the education materials for future use. As part of the environmental education program, children learned about the uses and effects of the plants Sevia, Lemongrass and Bassia Scoparia using their five senses. In addition, children were able to learn about the different cultivation methods and varieties of everyday vegetables and fruits that they encounter on a daily basis such as grapes, blueberries and cherry tomatoes. As a result of the program children were evidently able to improve their observation skills and comprehension skills by taking notes of their new discoveries, joys and impressions of everyday vegetables, while they learned about the wide varieties of vegetables and fruits of the Isehara Farmland and their cultivation methods. Meanwhile, as for the provision of the Isehara Farmland as a sustainable venue of environmental education, the establishment of an acceptance system and the securing of human resources remain as potential issues
    corecore