33 research outputs found

    Asian indoor pollution

    Get PDF
    東京大学場所:東京大学弥生講堂,共催:文部科学省21世紀COE「環日本海域の環境計測と長期・短期変動予測」,大気環境学

    A Novel Methodology to Evaluate Health Impacts Caused by VOC Exposures Using Real-Time VOC and Holter Monitors

    Get PDF
    While various volatile organic compounds (VOCs) are known to show neurotoxic effects, the detailed mechanisms of the action of VOCs on the autonomic nervous system are not fully understood, partially because objective and quantitative measures to indicate neural abnormalities are still under development. Nevertheless, heart rate variability (HRV) has been recently proposed as an indicative measure of the autonomic effects. In this study, we used HRV as an indicative measure of the autonomic effrects to relate their values to the personal concentrations of VOCs measured by a real-time VOC monitor. The measurements were conducted for 24 hours on seven healthy subjects under usual daily life conditions. The results showed HF powers were significantly decreased for six subjects when the changes of total volatile organic compound (TVOC) concentrations were large, indicating a suppression of parasympathetic nervous activity induced by the exposure to VOCs. The present study indicated these real-time monitoring was useful to characterize the trends of VOC exposures and their effects on autonomic nervous system

    Asian indoor pollution

    No full text

    Comparative Mask Protection against Inhaling Wildfire Smoke, Allergenic Bioaerosols, and Infectious Particles

    No full text
    This work compares relative mask inhalation protection against a range of airborne particle sizes that the general public may encounter, including infectious particles, wildfire smoke and ash, and allergenic fungal and plant particles. Several mask types available to the public were modeled with respirable fraction deposition. Best-case collection efficiencies for cloth, surgical, and respirator masks were predicted to be lowest (0.3, 0.6, and 0.8, respectively) for particle types with dominant sub-micrometer modes (wildfire smoke and human-emitted bronchial particles). Conversely, all mask types were predicted to achieve good collection efficiency (up to ~1.0) for the largest-sized particle types, including pollen grains, some fungal spores, and wildfire ash. Polydisperse infectious particles were predicted to be captured by masks with efficiencies of 0.3–1.0 depending on the pathogen size distribution and the type of mask used. Viruses aerosolized orally are predicted to be captured efficiently by all mask types, while those aerosolized from bronchiolar or laryngeal-tracheal sites are captured with much lower efficiency by surgical and cloth masks. The predicted efficiencies changed very little when extrathoracic deposition was included (inhalable rather than respirable fraction) or when very large (100 µm) particles were neglected. Actual mask fit and usage will determine protection levels in practice, but the relative comparisons in this work can inform mask guidance for different inhalation hazards, including particles generated by yard work, wildfires, and infections

    Secondary indoor air pollution and passive smoking associated with cannabis smoking using electric cigarette device-demonstrative in silico study.

    No full text
    With electronic (e)-liquids containing cannabis components easily available, many anecdotal examples of cannabis vaping using electronic cigarette devices have been reported. For electronic cigarette cannabis vaping, there are potential risks of secondary indoor air pollution from vapers. However, quantitative and accurate prediction of the inhalation and dermal exposure of a passive smoker in the same room is difficult to achieve due to the ethical constraints on subject experiments. The numerical method, i.e., in silico method, is a powerful tool to complement these experiments with real humans. In this study, we adopted a computer-simulated person that has been validated from multiple perspectives for prediction accuracy. We then conducted an in silico study to elucidate secondary indoor air pollution and passive smoking associated with cannabis vaping using an electronic cigarette device in an indoor environment. The aerosols exhaled by a cannabis vaper were confirmed to be a secondary emission source in an indoor environment; non-smokers were exposed to these aerosols via respiratory and dermal pathways. Tetrahydrocannabinol was used as a model chemical compound for the exposure study. Its uptake by the non-smoker through inhalation and dermal exposure under a worst-case scenario was estimated to be 5.9% and 2.6% of the exhaled quantity from an e-cigarette cannabis user, respectively
    corecore