456 research outputs found

    Application of Robotics for Therapeutic Exercise of Neural Disorder

    Get PDF
    Background: The application of robots for rehabilitation has been developing over the past decade. In neuro-rehabilitation, motor learning has become an important topic. To maximize the effect of motor learning, we need to clarify the key muscle and adequate intensity

    Improved Electrochemical Performance of a GexS1-x Alloy Negative Electrode for Lithium-Ion Batteries

    Get PDF
    A GexSi1−x alloy electrode is useful for addressing the shortcomings of a Si negative electrode for lithium-ion batteries. To further improve the electrochemical performance of a GexSi1−x negative electrode, a film-forming additive and the formation of a composite with LaSi2 were applied. A Ge0.1Si0.9 electrode exhibited better cyclability in the additive-containing electrolyte with a discharge capacity of 1240 mA h g−1 at the 400th cycle. In addition, a Ge0.1Si0.9/LaSi2 composite electrode showed better cycle performance than a Ge0.1Si0.9 electrode

    A Method for Producing Transgenic Cells Using a Multi-Integrase System on a Human Artificial Chromosome Vector

    Get PDF
    The production of cells capable of expressing gene(s) of interest is important for a variety of applications in biomedicine and biotechnology, including gene therapy and animal transgenesis. The ability to insert transgenes at a precise location in the genome, using site-specific recombinases such as Cre, FLP, and ΦC31, has major benefits for the efficiency of transgenesis. Recent work on integrases from ΦC31, R4, TP901-1 and Bxb1 phages demonstrated that these recombinases catalyze site-specific recombination in mammalian cells. In the present study, we examined the activities of integrases on site-specific recombination and gene expression in mammalian cells. We designed a human artificial chromosome (HAC) vector containing five recombination sites (ΦC31 attP, R4 attP, TP901-1 attP, Bxb1 attP and FRT; multi-integrase HAC vector) and de novo mammalian codon-optimized integrases. The multi-integrase HAC vector has several functions, including gene integration in a precise locus and avoiding genomic position effects; therefore, it was used as a platform to investigate integrase activities. Integrases carried out site-specific recombination at frequencies ranging from 39.3–96.8%. Additionally, we observed homogenous gene expression in 77.3–87.5% of colonies obtained using the multi-integrase HAC vector. This vector is also transferable to another cell line, and is capable of accepting genes of interest in this environment. These data suggest that integrases have high DNA recombination efficiencies in mammalian cells. The multi-integrase HAC vector enables us to produce transgene-expressing cells efficiently and create platform cell lines for gene expression

    Enhanced Performance of Sn4P3 Electrode Cycled in Ionic Liquid Electrolyte at Intermediate Temperature as Na‐Ion Battery Anode

    Get PDF
    Charge-discharge performances of Sn4P3 anodes for Na‐ion battery were evaluated in an ionic liquid electrolyte using N‐methyl‐N‐propylpyrrolidinium bis(fluorosulfonyl)amide at intermediate temperatures of 60 and 90 oC. At these temperatures, the anode showed extra capacities based on the full sodiation of Sn in a potential range below 0.2 V vs. Na+/Na because its slow kinetics was improved by elevating operation temperature. Under the current density of 0.1 A g-1 (0.08 C), the Sn4P3 anode at 60 oC exhibited a large capacity of 750 mA h g-1 at the 120th cycle and high Coulombic efficiencies above 99% after the 5th cycle. On the other hand, the efficiency degraded at 90 oC by the electrolyte decomposition. At 60 oC, the anode attained an excellent rate performance with capacity of 250 mA h g-1 even at 3 A g-1 (2.65 C). These results demonstrated the promising operation at intermediate temperature at around 60 oC for Sn4P3 anode in ionic liquid electrolyte

    Block-Iterative Reconstruction from Dynamically Selected Sparse Projection Views Using Extended Power-Divergence Measure

    Get PDF
    Iterative reconstruction of density pixel images from measured projections in computed tomography has attracted considerable attention. The ordered-subsets algorithm is an acceleration scheme that uses subsets of projections in a previously decided order. Several methods have been proposed to improve the convergence rate by permuting the order of the projections. However, they do not incorporate object information, such as shape, into the selection process. We propose a block-iterative reconstruction from sparse projection views with the dynamic selection of subsets based on an estimating function constructed by an extended power-divergence measure for decreasing the objective function as much as possible. We give a unified proposition for the inequality related to the difference between objective functions caused by one iteration as the theoretical basis of the proposed optimization strategy. Through the theory and numerical experiments, we show that nonuniform and sparse use of projection views leads to a reconstruction of higher-quality images and that an ordered subset is not the most effective for block-iterative reconstruction. The two-parameter class of extended power-divergence measures is the key to estimating an effective decrease in the objective function and plays a significant role in constructing a robust algorithm against noise
    corecore