145 research outputs found

    Field-orientation dependence of quantum phase transitions in the S=1/2 triangular-lattice antiferromagnet Ba3_3CoSb2_2O9_9

    Full text link
    Ba3_3CoSb2_2O9_9 approximates the two-dimensional spin-1/2 triangular-lattice Heisenberg antiferromagnet. This compound displays magnetic-field-induced quantum phase transitions, including the 1/3-magnetization-plateau, but its magnetization processes for the magnetic field HH parallel and perpendicular to the cc axis are different due to the weak easy-plane anisotropy and the weak interlayer antiferromagnetic exchange interaction. To elucidate how the quantum phase transitions change between these two field directions, we measured the field-angle dependence of the magnetization process in Ba3_3CoSb2_2O9_9 using pulsed high magnetic fields. We compared obtained magnetic field-field angle phase diagram with those obtained by the large-size cluster mean-field method combined with a scaling scheme and the semiclassical theory. We also found a narrow 1/3-magnetization plateau and a high-field transition with a small magnetization jump for HcH\,{\parallel}\,c, not observed in the previous studies.Comment: 8 pages, 7 figures, to appear in Phys. Rev.

    pH-dependent Formation of Membranous Cytoplasmic Body-like Structure of Ganglioside GM1/Bis(Monoacylglycero)Phosphate Mixed Membranes

    Get PDF
    Membrane structures of the mixtures of ganglioside GM1 and endosome specific lipid, bis(monoacylglycero)phosphate (BMP, also known as lysobisphosphatidic acid, LBPA) were examined at various pH conditions by freeze-fracture electron microscopy and small-angle x-ray scattering (SAXS). At pH 8.5 – 6.5, a GM1/BMP (1/1 mol/mol) mixture formed small vesicular aggregates, whereas the mixture formed closely packed lamellar structures under acidic conditions (pH 5.5, 4.6) with the lamellar repeat distance of 8.06 nm. Since BMP alone exhibits a diffuse lamellar structure at a broad range of pH values and GM1 forms a micelle, the present results indicate that both GM1 and BMP are required to produce the closely stacked multilamellar vesicles. These vesicles resemble membranous cytoplasmic bodies (MCB) in cells derived from patients suffering from GM1 gangliosidosis. Similar to GM1 gangliosidosis, cholesterol was trapped in BMP vesicles in GM1- and in a low pH-dependent manner. Studies employing different gangliosides and a GM1 analog suggest the importance of sugar chains and a sialic acid of GM1 in the pH-dependent structural change of GM1/BMP membranes

    pH-resistant Inhibitor of Mitochondrial ADP/ATP Carrier

    Get PDF
    Bongkrekic acid (BKA), isolated from Burkholderia cocovenenans, is known to specifically inhibit the mitochondrial ADP/ATP carrier. However, the manner of its interaction with the carrier remains elusive. In the present study, we tested the inhibitory effects of 17 bongkrekic acid analogues, derived from the intermediates obtained during its total synthesis, on the mitochondrial ATP/ATP carrier. Rough screening of these chemicals, done by measuring their inhibitory effects on the mitochondrial ATP synthesis, revealed that 4 of them, KH-1, 7, 16, and 17, had moderate inhibitory effects. Further characterization of the actions of these 4 analogues on mitochondrial function showed that KH-16 had moderate; KH-1 and KH-17, weak; and KH-7, negligible side effects of both permeabilization of the mitochondrial inner membrane and inhibition of the electron transport, indicating that only KH-7 had a specific inhibitory effect on the mitochondrial ADP/ATP carrier. Although the parental bongkrekic acid showed a strong pH dependency of its action, the inhibitory effect of KH-7 was almost insensitive to the pH of the reaction medium, indicating the importance of the 3 carboxyl groups of BKA for its pH- dependent action. A direct inhibitory effect of KH-7 on the mitochondrial ADP/ATP carrier was also clearly demonstrated

    Development of pericardial fat count images using a combination of three different deep-learning models

    Full text link
    Rationale and Objectives: Pericardial fat (PF), the thoracic visceral fat surrounding the heart, promotes the development of coronary artery disease by inducing inflammation of the coronary arteries. For evaluating PF, this study aimed to generate pericardial fat count images (PFCIs) from chest radiographs (CXRs) using a dedicated deep-learning model. Materials and Methods: The data of 269 consecutive patients who underwent coronary computed tomography (CT) were reviewed. Patients with metal implants, pleural effusion, history of thoracic surgery, or that of malignancy were excluded. Thus, the data of 191 patients were used. PFCIs were generated from the projection of three-dimensional CT images, where fat accumulation was represented by a high pixel value. Three different deep-learning models, including CycleGAN, were combined in the proposed method to generate PFCIs from CXRs. A single CycleGAN-based model was used to generate PFCIs from CXRs for comparison with the proposed method. To evaluate the image quality of the generated PFCIs, structural similarity index measure (SSIM), mean squared error (MSE), and mean absolute error (MAE) of (i) the PFCI generated using the proposed method and (ii) the PFCI generated using the single model were compared. Results: The mean SSIM, MSE, and MAE were as follows: 0.856, 0.0128, and 0.0357, respectively, for the proposed model; and 0.762, 0.0198, and 0.0504, respectively, for the single CycleGAN-based model. Conclusion: PFCIs generated from CXRs with the proposed model showed better performance than those with the single model. PFCI evaluation without CT may be possible with the proposed method
    corecore