80 research outputs found

    Control Method for Temperature Distribution in Reactor Furnace by Sequential Quadratic Programming Method

    Get PDF
    Temperature distribution in the reactor furnace is mainly operated by gas blowing from multiple tuyeres and material charge distribution. The objective of our research is obtain the optimal profile of gas flow to control temperature distribution in the reactor furnace in the shortest possible time. We formulated the optimization problem to reduce deviation of temperature distribution from its desired one in the reactor furnace. Based on the formulation, gas blow conditions are optimized by a sequential quadratic programming method to realize the desired temperature distribution. The validity of the method was checked through numerical experiments

    Application of Sequential Quadratic Programming Method toTemperature Distribution Control in Reactor Furnace

    Get PDF
    In reactor furnace, due to high temperature and high pressure, data can be measured only near the furnace wall. In this paper, the way to estimate temperature distribution in a reactor furnace using measured data near the furnace walls and to control temperature distribution to the desired temperature distribution was studied. In the estimation, SQP method is employed using measured data near the furnace walls. As the result, the whole temperature distribution in a furnace could be obtained from such limited data. Furthermore, to control the temperature distribution in a reactor furnace, gas flow from multiple tuyeres and supplying material for controlling temperature distribution in a reactor furnace were determined by the SQP method. It was shown that temperature distribution in a furnace was regulated to achieve various desired distribution. Thus, it was verified that complicated temperature distribution in a reactor furnace could be controlled by combining furnace simulation and SQP method

    Trigonometric distance and proper motions of H2O maser bowshocks in AFGL 5142

    Get PDF
    We present the results of multi-epoch VLBI observations of water masers in the AGFL 5142 massive star forming region. We measure an annual parallax of π=0.467±0.010\pi=0.467 \pm 0.010 mas, corresponding to a source distance of D=2.140.049+0.051D=2.14^{+0.051}_{-0.049} kpc. Proper motion and line of sight velocities reveal the 3D kinematics of masers in this region, most of which associate with millimeter sources from the literature. In particular we find remarkable bipolar bowshocks expanding from the most massive member, AFGL 5142 MM1, which are used to investigate the physical properties of its protostellar jet. We attempt to link the known outflows in this region to possible progenitors by considering a precessing jet scenario and we discuss the episodic nature of ejections in AFGL 5142

    Crosstalk between the Rb Pathway and AKT Signaling Forms a Quiescence-Senescence Switch

    Get PDF
    SummaryCell-cycle arrest in quiescence and senescence is largely orchestrated by the retinoblastoma (Rb) tumor-suppressor pathway, but the mechanisms underlying the quiescence-senescence switch remain unclear. Here, we show that the crosstalk between the Rb-AKT-signaling pathways forms this switch by controlling the overlapping functions of FoxO3a and FoxM1 transcription factors in cultured fibroblasts. In the absence of mitogenic signals, although FoxM1 expression is repressed by the Rb pathway, FoxO3a prevents reactive oxygen species (ROS) production by maintaining SOD2 expression, leading to quiescence. However, if the Rb pathway is activated in the presence of mitogenic signals, FoxO3a is also inactivated by AKT, thus reducing SOD2 expression and consequently allowing ROS production. This situation elicits senescence through irreparable DNA damage. We demonstrate that this pathway operates in mouse liver, indicating that this machinery may contribute more broadly to tissue homeostasis in vivo

    Fundamental Parameters of the Milky Way Galaxy Based on VLBI astrometry

    Full text link
    We present analyses to determine the fundamental parameters of the Galaxy based on VLBI astrometry of 52 Galactic maser sources obtained with VERA, VLBA and EVN. We model the Galaxy's structure with a set of parameters including the Galaxy center distance R_0, the angular rotation velocity at the LSR Omega_0, mean peculiar motion of the sources with respect to Galactic rotation (U_src, V_src, W_src), rotation-curve shape index, and the V component of the Solar peculiar motions V_sun. Based on a Markov chain Monte Carlo method, we find that the Galaxy center distance is constrained at a 5% level to be R_0 = 8.05 +/- 0.45 kpc, where the error bar includes both statistical and systematic errors. We also find that the two components of the source peculiar motion U_src and W_src are fairly small compared to the Galactic rotation velocity, being U_src = 1.0 +/- 1.5 km/s and W_src = -1.4 +/- 1.2 km/s. Also, the rotation curve shape is found to be basically flat between Galacto-centric radii of 4 and 13 kpc. On the other hand, we find a linear relation between V_src and V_sun as V_src = V_sun -19 (+/- 2) km/s, suggesting that the value of V_src is fully dependent on the adopted value of V_sun. Regarding the rotation speed in the vicinity of the Sun, we also find a strong correlation between Omega_0 and V_sun. We find that the angular velocity of the Sun, Omega_sun, which is defined as Omega_sun = Omega_0 + V_sun/R_0, can be well constrained with the best estimate of Omega_sun = 31.09 +/- 0.78 km/s/kpc. This corresponds to Theta_0 = 238 +/- 14 km/s if one adopts the above value of R_0 and recent determination of V_sun ~ 12 km/s.Comment: 14 pages, 6 figures, PASJ in pres

    Mortality and life expectancy of Yokkaichi Asthma patients, Japan: Late effects of air pollution in 1960–70s

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of chronic obstructive pulmonary disease (COPD) and bronchial asthma began increasing in early 1960s in the population of Yokkaichi-city (Mie Prefecture, Japan). The cause of the disease was sulfur oxide air pollution, and it is known as Yokkaichi Asthma. The pollution markedly decreased by the end of 1970s; no new cases have been reported since 1988. This study aimed at examining the late effects of air pollution on the health of Yokkaichi Asthma patients.</p> <p>Methods</p> <p>Mortality rate and life expectancy of patients, registered between 1965 and 1988, were investigated from 1975 through 2000.</p> <p>Results</p> <p>Mortality rates for COPD and asthma in patients from Yokkaichi-city were significantly higher than in the whole population of Mie Prefecture. For all ages (except for males between 80 and 84 years in 1985), the life expectancy of both males and females were significantly reduced in patients from Yokkaichi-city as compared with the whole population of Mie Prefecture. The potential gains in life expectancy excluding the mortality for respiratory diseases including COPD and asthma were larger for all ages in patients from Yokkaichi-city.</p> <p>Conclusion</p> <p>Mortality and life expectancy were adversely affected in patients from Yokkaichi-city, despite the fact that the air pollution problem has been already solved.</p

    RUNX1 transactivates BCR-ABL1 expression in Philadelphia chromosome positive acute lymphoblastic leukemia

    Get PDF
    The emergence of tyrosine kinase inhibitors as part of a front-line treatment has greatly improved the clinical outcome of the patients with Ph⁺ acute lymphoblastic leukemia (ALL). However, a portion of them still become refractory to the therapy mainly through acquiring mutations in the BCR-ABL1 gene, necessitating a novel strategy to treat tyrosine kinase inhibitor (TKI)-resistant Ph⁺ ALL cases. In this report, we show evidence that RUNX1 transcription factor stringently controls the expression of BCR-ABL1, which can strategically be targeted by our novel RUNX inhibitor, Chb-M'. Through a series of in vitro experiments, we identified that RUNX1 binds to the promoter of BCR and directly transactivates BCR-ABL1 expression in Ph⁺ ALL cell lines. These cells showed significantly reduced expression of BCR-ABL1 with suppressed proliferation upon RUNX1 knockdown. Moreover, treatment with Chb-M' consistently downregulated the expression of BCR-ABL1 in these cells and this drug was highly effective even in an imatinib-resistant Ph⁺ ALL cell line. In good agreement with these findings, forced expression of BCR-ABL1 in these cells conferred relative resistance to Chb-M'. In addition, in vivo experiments with the Ph⁺ ALL patient-derived xenograft cells showed similar results. In summary, targeting RUNX1 therapeutically in Ph⁺ ALL cells may lead to overcoming TKI resistance through the transcriptional regulation of BCR-ABL1. Chb-M' could be a novel drug for patients with TKI-resistant refractory Ph⁺ ALL
    corecore