9 research outputs found

    Readministration of gefitinib in a responder after treatment discontinuation due to gefinitib-related interstitial lung disease: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Gefitinib is a new molecular-targeted agent for the treatment of patients with advanced non-small cell lung cancer that fail to respond to conventional chemotherapy. Gefitinib is considered to be well tolerated and less toxic compared with conventional cytotoxic drugs. However, interstitial lung disease (ILD) has been reported as a serious adverse effect. The precise management of a gefitinib responder having severe adverse events remains unknown.</p> <p>Case Presentation</p> <p>We report the case of gefitinib readministration in a patient with lung adenocarcinoma who had once responded but in whom treatment had to be discontinued owing to gefinitib-related ILD. A dramatic response was achieved both at the time of initial treatment (250 mg/day) and at readministration of gefitinib (125 mg/day). The effectiveness of gefitinib therapy in our patient could be explained in part by the presence of an activating mutation of epidermal growth factor receptor (<it>EGFR</it>) gene, L858R in exon 21, which was identified in the primary tumor.</p> <p>Conclusion</p> <p>A reduced dose of gefitinib might be sufficient for patients having tumors with <it>EGFR </it>gene mutations, and that the currently approved dose may be excessively potent in some of these patients, thus resulting in the onset of adverse events.</p

    Feasibility of Rapid Diagnostic Technology for SARS-CoV-2 Virus Using a Trace Amount of Saliva

    No full text
    Containment of SARS-CoV-2 has become an urgent global issue. To overcome the problems of conventional quantitative polymerase chain reaction (qPCR) tests, we verified the usefulness of a mobile qPCR device that utilizes mouthwash to obtain a saliva sample with the aim of developing a rapid diagnostic method for SARS-CoV-2. First, we examined whether anyone could easily operate this device. Then, we examined whether RNA in the mouthwash could be detected in a short time. In addition, we investigated whether it was possible to diagnose SARS-CoV-2 infection using mouthwash obtained from COVID-19 patients undergoing hospitalization. The results revealed that all subjects were able to complete the operation properly without error. In addition, RNase P was detected in the mouthwash without pretreatment. The average detection time was 18 min, which is significantly shorter than conventional qPCR devices. Furthermore, this device detected SARS-CoV-2 in the mouthwash of a COVID-19 patient undergoing hospitalization. The above findings verified the efficacy of this diagnostic method, which had a low risk of infection, was technically simple, and provided stable results. Therefore, this method is useful for the rapid detection of SARS-CoV-2

    Improving the Detection Sensitivity of a New Rapid Diagnostic Technology for Severe Acute Respiratory Syndrome Coronavirus 2 Using a Trace Amount of Saliva

    No full text
    The early diagnosis and isolation of infected individuals with coronavirus disease 2019 (COVID-19) remain important. Although quantitative polymerase chain reaction (qPCR) testing is considered the most accurate test available for COVID-19 diagnosis, it has some limitations, such as the need for specialized laboratory technicians and a long turnaround time. Therefore, we have established and reported a rapid diagnostic method using a small amount of saliva as a sample using a lightweight mobile qPCR device. This study aimed to improve the existing method and increase the detection sensitivity and specificity. The detection specificity of CDC N1 and N2 was examined by improving qPCR reagents and polymerase chain reaction conditions for the previously reported method. Furthermore, the feasibility of detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA was examined using both the previous method and the improved method in patients with COVID-19. The results showed that the improved method increased the specificity and sensitivity. This improved method is useful for the rapid diagnosis of SARS-CoV-2
    corecore