144 research outputs found

    Retraining-free Customized ASR for Enharmonic Words Based on a Named-Entity-Aware Model and Phoneme Similarity Estimation

    Full text link
    End-to-end automatic speech recognition (E2E-ASR) has the potential to improve performance, but a specific issue that needs to be addressed is the difficulty it has in handling enharmonic words: named entities (NEs) with the same pronunciation and part of speech that are spelled differently. This often occurs with Japanese personal names that have the same pronunciation but different Kanji characters. Since such NE words tend to be important keywords, ASR easily loses user trust if it misrecognizes them. To solve these problems, this paper proposes a novel retraining-free customized method for E2E-ASRs based on a named-entity-aware E2E-ASR model and phoneme similarity estimation. Experimental results show that the proposed method improves the target NE character error rate by 35.7% on average relative to the conventional E2E-ASR model when selecting personal names as a target NE.Comment: accepted by INTERSPEECH202

    Improvement of DOA Estimation by using Quaternion Output in Sound Event Localization and Detection

    Get PDF
    This paper describes improvement of Direction of Arrival (DOA) estimation performance using quaternion output in the Detection and Classification of Acoustic Scenes and Events (DCASE) 2019 Task 3. DCASE 2019 Task3 focuses on the sound event localization and detection (SELD) which is a task that simultaneously estimates the sound source direction in addition to conventional sound event detection (SED). In the baseline method, the sound source direction angle is directly regressed. However, the angle is a periodic function and it has discontinuities which may make learning unstable. Specifical-ly, even though -180 deg and 180 deg are in the same direc-tion, a large loss is calculated. Estimating DOA angles with a classification approach instead of regression can solve such instability of discontinuities but this causes limitation of reso-lution. In this paper, we propose to introduce the quaternion which is a continuous function into the output layer of the neural network instead of directly estimating the sound source direction angle. This method can be easily implemented only by changing the output of the existing neural network, and thus does not significantly increase the number of parameters in the middle layers. Experimental results show that proposed method improves the DOA estimation without significantly increasing the number of parameters.24424

    Asymmetric Division and Lineage Commitment at the Level of Hematopoietic Stem Cells: Inference from Differentiation in Daughter Cell and Granddaughter Cell Pairs

    Get PDF
    How hematopoietic stem cells (HSCs) commit to a particular lineage is unclear. A high degree of HSC purification enabled us to address this issue at the clonal level. Single-cell transplantation studies revealed that 40% of the CD34−/low, c-Kit+, Sca-1+, and lineage marker− (CD34−KSL) cells in adult mouse bone marrow were able, as individual cells, to reconstitute myeloid and B- and T-lymphoid lineages over the long-term. Single-cell culture showed that >40% of CD34−KSL cells could form neutrophil (n)/macrophage (m)/erythroblast (E)/megakaryocyte (M) (nmEM) colonies. Assuming that a substantial portion of long-term repopulating cells can be detected as nmEM cells within this population, we compared differentiation potentials between individual pairs of daughter and granddaughter cells derived in vitro from single nmEM cells. One of the two daughter or granddaughter cells remained an nmEM cell. The other showed a variety of combinations of differentiation potential. In particular, an nmEM cell directly gave rise, after one cell division, to progenitor cells committed to nm, EM, or M lineages. The probability of asymmetric division of nmEM cells depended on the cytokines used. These data strongly suggest that lineage commitment takes place asymmetrically at the level of HSCs under the influence of external factors

    Human Hematopoietic Stem Cells Can Survive In Vitro for Several Months

    Get PDF
    We previously reported that long-lasting in vitro hematopoiesis could be achieved using the cells differentiated from primate embryonic stem (ES) cells. Thus, we speculated that hematopoietic stem cells differentiated from ES cells could sustain long-lasting in vitro hematopoiesis. To test this hypothesis, we investigated whether human hematopoietic stem cells could similarly sustain long-lasting in vitro hematopoiesis in the same culture system. Although the results varied between experiments, presumably due to differences in the quality of each hematopoietic stem cell sample, long-lasting in vitro hematopoiesis was observed to last up to nine months. Furthermore, an in vivo analysis in which cultured cells were transplanted into immunodeficient mice indicated that even after several months of culture, hematopoietic stem cells were still present in the cultured cells. To the best of our knowledge, this is the first report to show that human hematopoietic stem cells can survive in vitro for several months

    An All-Recombinant Protein-Based Culture System Specifically Identifies Hematopoietic Stem Cell Maintenance Factors.

    Get PDF
    Hematopoietic stem cells (HSCs) are considered one of the most promising therapeutic targets for the treatment of various blood disorders. However, due to difficulties in establishing stable maintenance and expansion of HSCs in vitro, their insufficient supply is a major constraint to transplantation studies. To solve these problems we have developed a fully defined, all-recombinant protein-based culture system. Through this system, we have identified hemopexin (HPX) and interleukin-1α as responsible for HSC maintenance in vitro. Subsequent molecular analysis revealed that HPX reduces intracellular reactive oxygen species levels within cultured HSCs. Furthermore, bone marrow immunostaining and 3D immunohistochemistry revealed that HPX is expressed in non-myelinating Schwann cells, known HSC niche constituents. These results highlight the utility of this fully defined all-recombinant protein-based culture system for reproducible in vitro HSC culture and its potential to contribute to the identification of factors responsible for in vitro maintenance, expansion, and differentiation of stem cell populations

    A Functional SNP in BNC2 Is Associated with Adolescent Idiopathic Scoliosis

    Get PDF
    Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity. We previously conducted a genome-wide association study (GWAS) and detected two loci associated with AIS. To identify additional loci, we extended our GWAS by increasing the number of cohorts (2,109 affected subjects and 11,140 control subjects in total) and conducting a whole-genome imputation. Through the extended GWAS and replication studies using independent Japanese and Chinese populations, we identified a susceptibility locus on chromosome 9p22.2 (p = 2.46 × 10−13; odds ratio = 1.21). The most significantly associated SNPs were in intron 3 of BNC2, which encodes a zinc finger transcription factor, basonuclin-2. Expression quantitative trait loci data suggested that the associated SNPs have the potential to regulate the BNC2 transcriptional activity and that the susceptibility alleles increase BNC2 expression. We identified a functional SNP, rs10738445 in BNC2, whose susceptibility allele showed both higher binding to a transcription factor, YY1 (yin and yang 1), and higher BNC2 enhancer activity than the non-susceptibility allele. BNC2 overexpression produced body curvature in developing zebrafish in a gene-dosage-dependent manner. Our results suggest that increased BNC2 expression is implicated in the etiology of AIS
    corecore