21 research outputs found

    Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum

    Get PDF
    Alkaloids play a key role in higher plant defense against pathogens and herbivores. Following its biosynthesis in root tissues, nicotine, the major alkaloid of Nicotiana species, is translocated via xylem transport toward the accumulation sites, leaf vacuoles. Our transcriptome analysis of methyl jasmonate-treated tobacco BY-2 cells identified several multidrug and toxic compound extrusion (MATE) transporter genes. In this study, we characterized a MATE gene, Nicotiana tabacum jasmonate-inducible alkaloid transporter 2 (Nt-JAT2), which encodes a protein that has 32% amino acid identity with Nt-JAT1. Nt-JAT2 mRNA is expressed at a very low steady state level in whole plants, but is rapidly upregulated by methyl jasmonate treatment in a leaf-specific manner. To characterize the function of Nt-JAT2, yeast cells were used as the host organism in a cellular transport assay. Nt-JAT2 was localized at the plasma membrane in yeast cells. When incubated in nicotine-containing medium, the nicotine content in Nt-JAT2-expressing cells was significantly lower than in control yeast. Nt-JAT2-expressing cells also showed lower content of other alkaloids like anabasine and anatabine, but not of flavonoids, suggesting that Nt-JAT2 transports various alkaloids including nicotine. Fluorescence assays in BY-2 cells showed that Nt-JAT2-GFP was localized to the tonoplast. These findings indicate that Nt-JAT2 is involved in nicotine sequestration in leaf vacuoles following the translocation of nicotine from root tissues

    A Tolerance Gene for Prenylated Flavonoid Encodes a 26S Proteasome Regulatory Subunit in Sophora flavescens

    Get PDF
    Yeast functional screening with a Sophora flavescens cDNA library was performed to identify the genes involved in the tolerant mechanism to the self-producing prenylated flavonoid sophoraflavanone G (SFG). One cDNA, which conferred SFG tolerance, encoded a regulatory particle triple-A ATPase 2 (SfRPT2), a member of the 26S proteasome subunit. The yeast transformant of SfRPT2 showed reduced SFG accumulation in the cells

    A Tolerance Gene for Prenylated Flavonoid Encodes a 26S Proteasome Regulatory Subunit in Sophora flavescens

    No full text
    Yeast functional screening with a Sophora flavescens cDNA library was performed to identify the genes involved in the tolerant mechanism to the self-producing prenylated flavonoid sophoraflavanone G (SFG). One cDNA, which conferred SFG tolerance, encoded a regulatory particle triple-A ATPase 2 (SfRPT2), a member of the 26S proteasome subunit. The yeast transformant of SfRPT2 showed reduced SFG accumulation in the cells

    Expression of Nt-JAT2 in tobacco plants.

    No full text
    <p>(A) Organ-specific expression of <i>Nt-JAT2</i> mRNA in tobacco plants. Total RNA (7.5 µg) prepared from each tobacco organ was probed with <sup>32</sup>P-labeled <i>Nt-JAT2</i> fragment (0.5 kb) (top). The amount of total RNA applied to each lane is shown by EtBr-stained 18S rRNA (bottom). For comparison between NtJAT1 and NtJAT2 expression, analysis was performed using the same membrane as our previous study <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108789#pone.0108789-Morita1" target="_blank">[15]</a>. (B, C) Immunoblot analysis of Nt-JAT2 and Nt-JAT1 proteins in control (B) and MeJA treated (C) plants. Microsomes from tobacco leaves, stems and roots were subjected to electrophoresis, blotted, and incubated with antibody to Nt-JAT2 or Nt-JAT1. L, leaves (Leaves were numbered from top to bottom).</p
    corecore