32 research outputs found

    Monoids, Embedding Functors and Quantum Groups

    Get PDF
    We show that the left regular representation \pi_l of a discrete quantum group (A,\Delta) has the absorbing property and forms a monoid (\pi_l,\tilde{m},\tilde{\eta}) in the representation category Rep(A,\Delta). Next we show that an absorbing monoid in an abstract tensor *-category C gives rise to an embedding functor E:C->Vect_C, and we identify conditions on the monoid, satisfied by (\pi_l,\tilde{m},\tilde{\eta}), implying that E is *-preserving. As is well-known, from an embedding functor E: C->\mathrm{Hilb} the generalized Tannaka theorem produces a discrete quantum group (A,\Delta) such that C is equivalent to Rep_f(A,\Delta). Thus, for a C^*-tensor category C with conjugates and irreducible unit the following are equivalent: (1) C is equivalent to the representation category of a discrete quantum group (A,\Delta), (2) C admits an absorbing monoid, (3) there exists a *-preserving embedding functor E: C->\mathrm{Hilb}.Comment: Final version, to appear in Int. Journ. Math. (Added some references and Subsection 1.2.) Latex2e, 21 page

    Spin Calogero Particles and Bispectral Solutions of the Matrix KP Hierarchy

    Full text link
    Pairs of n×nn\times n matrices whose commutator differ from the identity by a matrix of rank rr are used to construct bispectral differential operators with r×rr\times r matrix coefficients satisfying the Lax equations of the Matrix KP hierarchy. Moreover, the bispectral involution on these operators has dynamical significance for the spin Calogero particles system whose phase space such pairs represent. In the case r=1r=1, this reproduces well-known results of Wilson and others from the 1990's relating (spinless) Calogero-Moser systems to the bispectrality of (scalar) differential operators. This new class of pairs (L,Λ)(L, \Lambda) of bispectral matrix differential operators is different than those previously studied in that LL acts from the left, but Λ\Lambda from the right on a common r×rr\times r eigenmatrix.Comment: 16 page

    RECOMMENDED FOR ACCEPTANCE

    No full text
    With recent improvements in methods for the acquisition and rendering of 3D models, the need for retrieval of models from large repositories of 3D shapes has gained prominence in the graphics and vision communities. A variety of methods have been proposed that enable the efficient querying of model repositories for a desired 3D shape. Many of these methods use a 3D model as a query and attempt to retrieve models from the database that have a similar shape. In this thesis, we begin by introducing a new shape descriptor that is well suited to the task of 3D model retrieval. The descriptor is designed to enable efficient comparison of 3D shapes and is constructed to approximate the performance of a standard metric for comparing 3D models, thereby satisfying the requirements of efficiency and discrim-inability that are necessary for an effective, real-time shape retrieval system. We compare our descriptor to other existing descriptors in empirical retrieval experiments, demon-strating that the new shape descriptor provides improved retrieval accuracy and is better suited to the task of shape matching

    Reconstruction of Solid Models from Oriented Point Sets

    No full text
    In this paper we present a novel approach to the surface reconstruction problem that takes as its input an oriented point set and returns a solid, water-tight model. The idea of our approach is to use Stokes ’ Theorem to compute the characteristic function of the solid model (the function that is equal to one inside the model and zero outside of it). Specifically, we provide an efficient method for computing the Fourier coefficients of the characteristic function using only the surface samples and normals, we compute the inverse Fourier transform to get back the characteristic function, and we use iso-surfacing techniques to extract the boundary of the solid model. The advantage of our approach is that it provides an automatic, simple, and efficient method for computing the solid model represented by a point set without requiring the establishment of adjacency relations between samples or iteratively solving large systems of linear equations. Furthermore, our approach can be directly applied to models with holes and cracks, providing a method for hole-filling and zippering of disconnected polygonal models

    Shape matching and anisotropy

    No full text
    corecore